当前位置: 首页 > news >正文

鞍山网站网站建设个人主页怎么找

鞍山网站网站建设,个人主页怎么找,建e网全景合成,母婴行业网站建设朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。 贝叶斯定理 P ( A ∣ B ) P ( B ∣ A ) ∗ P ( A ) P ( B ) P(A|B)\frac{P(B|A) * P(A)}{P(B)} P(A∣B)P(B)P(B∣A)∗P(A)​ 其中A表示分类,B表示属性&…

朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。

贝叶斯定理

P ( A ∣ B ) = P ( B ∣ A ) ∗ P ( A ) P ( B ) P(A|B)=\frac{P(B|A) * P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)
其中A表示分类,B表示属性,因此此公式更通俗的表述如下:
P ( 分类 ∣ 属性 ) = P ( 属性 ∣ 分类 ) ∗ P ( 分类 ) P ( 属性 ) P(分类|属性)=\frac{P(属性|分类) * P(分类)}{P(属性)} P(分类属性)=P(属性)P(属性分类)P(分类)
即在已知属性B的前提下,分类为A的概率等于似然率(已知分类中属性B的概率)乘以先验概率(分类A的概率)除以证据概率(属性B的概率)。

优点

  1. 对于大量数据的预测靠谱。
  2. 计算简便。

缺点

  1. 属性之间必须独立。
  2. 选取没有相互干涉的属性是难点。

举例:在夏季,某公园男性穿凉鞋的概率为 1/2 ,女性穿凉鞋的概率为 2/3 ,
并且该公园中男女比例通常为 2:1 ,问题:若你在公园中随机遇到一个穿凉鞋的人,
请问他的性别为男性或女性的概率分别为多少?

P(男|穿凉鞋)=P(穿凉鞋|男)P(男)/P(穿凉鞋)
= 1/2 * 2/3 / (2/3 * 1/2 + 1/3
2/3)
= 1/3 / (1/3+2/9)
= 3/5

P(女|穿凉鞋)=P(穿凉鞋|女)P(女)/P(穿凉鞋)
= 2/3 * 1/3 / (2/3 * 1/2 + 1/3
2/3)
= 2/9 / (1/3+2/9)
= 2/9 * 9/5
= 2/5

所以在公园里,随机遇到一个穿凉鞋的人,性别为女男的概率是 3/5,性别为女的概率为 2/5。

怎样避免0概率问题

使用拉普拉斯修正,修改公式如下:
P ^ ( C = c j ) = N ( c j ) + 1 N + C \hat{P}(C=c_j)=\frac{N(c_j)+1}{N+C} P^(C=cj)=N+CN(cj)+1
上式表示 c j c_j cj分类的概率,其中 C 表示分类数量,N 表示所有的数量。
P ^ ( x i ∣ C = c j ) = N ( x i ∣ C = c j ) + 1 N + X \hat{P}(x_i|C=c_j)=\frac{N(x_i|C=c_j)+1}{N+X} P^(xiC=cj)=N+XN(xiC=cj)+1
上式表示特定 x i x_i xi属性中类 c j c_j cj的概率,其中 X 表示属性数量。

高斯朴素贝叶斯分类器

  1. 高斯分布
    P ( x i ∣ μ , σ ) = 1 ( 2 π σ 2 ) 1 2 ∗ e − ( x i − μ ) 2 2 σ 2 P(x_i|\mu,\sigma)=\frac{1}{(2\pi \sigma^2)^{\frac{1}{2}}} * e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} P(xiμ,σ)=(2πσ2)211e2σ2(xiμ)2
    其中 μ = 1 N ∑ i = 1 N x i \mu=\frac{1}{N}\sum\limits_{i=1}^{N}x_i μ=N1i=1Nxi表示样本的期望, σ 2 = 1 N ∑ i = 1 N ( x i − μ ) 2 \sigma^2=\frac{1}{N}\sum\limits_{i=1}^{N}(x_i-\mu)^2 σ2=N1i=1N(xiμ)2表示样本的方差。
    如果要使用无偏差估计,N 取 N+1。
  2. 如果特征值服从高斯分布,那么根据特征值估计分类概率的公式如下:
    P ^ ( x i ∣ C = c i ) = 1 ( 2 π σ i j 2 ) 1 2 ∗ e − ( x i − μ i j ) 2 2 σ i j 2 \hat{P}(x_i|C=c_i)=\frac{1}{(2\pi \sigma_{ij}^2)^{\frac{1}{2}}} * e^{-\frac{(x_i-\mu{ij})^2}{2\sigma_{ij}^2}} P^(xiC=ci)=(2πσij2)211e2σij2(xiμij)2
    其中 μ i j \mu_{ij} μij表示分类为 c i c_i ci时,属性 x j x_j xj的期望,
    σ i j 2 \sigma_{ij}^2 σij2表示分了为 c i c_i ci时,属性 x j x_j xj的方差。
http://www.yayakq.cn/news/423983/

相关文章:

  • 网站开发外包费用会计科目上海市建设注册管理网站
  • 中国建设银行网站是什么好的龙岗网站建设
  • 实时开奖走势网站建设女生适合学计算机的哪个专业
  • 腾讯网站开发wordpress首页调用页面文章的内容
  • 宣传网站怎么做顺德网站建设价格
  • 有做装修效果图赚钱的网站吗厦门翔安建设局网站
  • 常州住房和城乡建设部网站google外贸建站
  • 单页营销型网站建设游戏代理300元一天
  • 游戏网站建设公司长沙做网站seo公司
  • 网站建设流《网页设计与网站建设》
  • 安徽禹尧工程建设有限公司网站wordpress 网站地图类
  • 百度网站的域名地址网站制作的软件有哪些
  • 山东建设执业师专业官方网站建设银行积分兑换商城网站
  • 杭州网站优化服务视频广告网站
  • 重庆网站建设找承越如何做百度网站推广
  • seo网站优化方案书传媒网站建设价格
  • unity做网站国外优秀摄影网站
  • 手机端网站开发多少钱浏览器网址入口
  • 代做网站的好处wordpress删除底部
  • 网站做两个版本简约风格网站建设
  • 网站建设psd辽宁省建筑工程造价信息网
  • 为什么做网站ppt定制化网站开发
  • 建站代理赚钱吗应届生去外包公司
  • 合众商道网站开发黄冈公司网站建设平台
  • 网站建设技术服务税种分类成都logo设计公司
  • 烟台住房和城乡建设厅网站做的网站显示不了背景图片
  • 灰色系网站网站建设属于无形资产吗
  • wap网站模板下载深圳为华网络科技有限公司
  • 网站建设常用编程语言园林景观设计公司质量环境职业健康安全管控
  • 网站怎么做长尾词网站文章不显示