当前位置: 首页 > news >正文

企业信息公共服务平台官网seo推广方案怎么做

企业信息公共服务平台官网,seo推广方案怎么做,去哪里学习做网站,用自己主机做网站视频目录 1. 冒泡排序 (Bubble Sort 2. 选择排序 (Selection Sort) 3. 插入排序 (Insertion Sort) 4. 快速排序 (Quick Sort) 5. 归并排序 (Merge Sort) 6. 堆排序 (Heap Sort) 排序算法 时间复杂度 空间复杂度 备注冒泡排序 最好情况: O(n) 平均情况: O(n^2) 最坏情况: O(n^…

目录

1. 冒泡排序 (Bubble Sort

2. 选择排序 (Selection Sort)

3. 插入排序 (Insertion Sort)

4. 快速排序 (Quick Sort)

5. 归并排序 (Merge Sort)

6. 堆排序 (Heap Sort)


排序算法 时间复杂度 空间复杂度 备注
冒泡排序 最好情况: O(n)
平均情况: O(n^2)
最坏情况: O(n^2)
 O(1)  原地排序,只需常量级额外空间
选择排序

最好情况: O(n^2)

平均情况: O(n^2)
最坏情况: O(n^2)

 O(1) 原地排序,只需常量级额外空间
插入排序最好情况: O(n)
平均情况: O(n^2)
最坏情况: O(n^2)
 O(1) 原地排序,只需常量级额外空间
快速排序最好情况: O(n log n)
平均情况: O(n log n)
最坏情况: O(n^2
O(log n) 递归调用栈空间,最好情况O(log n),最坏情况O(n),但平均情况为O(log n)
归并排序最好情况:O(n log n)
平均情况: O(n log n)
最坏情况: O(n log n)
 O(n)  需要额外的临时数组来存储合并结果
堆排序最好情况: O(n log n)
平均情况: O(n log n)
最坏情况: O(n log n)
O(1)  原地排序,堆的调整过程在数组内部进行,只需常量级额外空间(不考虑递归实现,若考虑递归则与快速排序类似)

1. 冒泡排序 (Bubble Sort

时间复杂度:

  • 最好情况: O(n)
  • 平均情况: O(n^2)
  • 最坏情况: O(n^2)
function bubbleSort(arr) {  let n = arr.length;  for (let i = 0; i < n - 1; i++) {  for (let j = 0; j < n - 1 - i; j++) {  if (arr[j] > arr[j + 1]) {  // 交换元素  [arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];  }  }  }  return arr;  
}

2. 选择排序 (Selection Sort)

原理:

选择排序是一种简单直观的排序算法。它的工作原理是首先在未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

具体步骤如下:

  1. 从未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置。
  2. 再从剩余未排序元素中继续寻找最小(或最大)元素,放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。

特点:

  • 选择排序的时间复杂度为O(n^2),其中n是待排序元素的数量。
  • 选择排序是一种原地排序算法,因为它只需要一个额外的空间来存储当前找到的最小(或最大)元素。
  • 选择排序不是稳定的排序算法,因为相同元素的相对位置可能会在排序过程中发生改变。

时间复杂度:

  • 最好情况: O(n^2)
  • 平均情况: O(n^2)
  • 最坏情况: O(n^2)
function selectionSort(arr) {  let n = arr.length;  for (let i = 0; i < n - 1; i++) {  let minIndex = i;  for (let j = i + 1; j < n; j++) {  if (arr[j] < arr[minIndex]) {  minIndex = j;  }  }  // 交换元素  [arr[i], arr[minIndex]] = [arr[minIndex], arr[i]];  }  return arr;  
}

3. 插入排序 (Insertion Sort)

原理:

插入排序的工作方式是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,找到相应位置并插入时,不需要移动元素,只需将要插入的元素移动到插入点即可。

具体步骤如下:

  1. 从第一个元素开始,该元素可以认为已经被排序。
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描。
  3. 如果该元素(已排序)大于新元素,则将该元素移到下一位置。
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置。
  5. 将新元素插入到该位置后。
  6. 重复步骤2~5,直到所有元素均排序完毕。

特点:

  • 插入排序的时间复杂度为O(n^2),在数据规模较小时表现良好,特别是当数据基本有序时,时间复杂度可以接近O(n)。
  • 插入排序是一种原地排序算法,因为它只需要一个额外的空间来存储当前正在插入的元素。
  • 插入排序是稳定的排序算法,因为相同元素的相对位置在排序过程中不会发生改变。

时间复杂度:

  • 最好情况: O(n)
  • 平均情况: O(n^2)
  • 最坏情况: O(n^2)
function insertionSort(arr) {  let n = arr.length;  for (let i = 1; i < n; i++) {  let key = arr[i];  let j = i - 1;  while (j >= 0 && arr[j] > key) {  arr[j + 1] = arr[j];  j = j - 1;  }  arr[j + 1] = key;  }  return arr;  
}

4. 快速排序 (Quick Sort)

原理:

快速排序是一种通过基准划分区块,再不断交换左右项的排序方式。它采用了分治法,减少了交换的次数。快速排序的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归或迭代进行,以此让整个数列变成有序序列。

具体步骤如下:

  1. 在待排序区间找到一个基准点(pivot),一般选择数组的第一个元素、最后一个元素或者随机选择一个元素。
  2. 逐个循环数组,将小于基准的项放在左侧,将大于基准的项放在右侧。一般通过交换的方式来实现。
  3. 对基准点左侧全部项和基点右侧全部项分别通过递归(或迭代)方式重复上述步骤,直到所有数组都交换完成。

时间复杂度:

  • 最好情况: O(n log n)
  • 平均情况: O(n log n)
  • 最坏情况: O(n^2) (但可以通过随机化选择基准元素等方法优化)
function quickSort(arr) {  if (arr.length <= 1) {  return arr;  }  let pivot = arr[Math.floor(arr.length / 2)];  let left = [];  let right = [];  for (let i = 0; i < arr.length; i++) {  if (i === Math.floor(arr.length / 2)) continue;  if (arr[i] < pivot) {  left.push(arr[i]);  } else {  right.push(arr[i]);  }  }  return [...quickSort(left), pivot, ...quickSort(right)];  
}

5. 归并排序 (Merge Sort)

原理:

归并排序是一种分治算法,其工作原理是将未排序的列表划分为n个子列表,每个子列表包含一个元素(包含一个元素的列表被认为是有序的),然后重复合并子列表以生成新的有序子列表,直到只剩下一个子列表。
具体步骤如下:

  1. 分解:将待排序的n个元素的序列分成两个子序列,每个子序列包含n/2个元素。
  2. 解决:使用归并排序递归地排序两个子序列。
  3. 合并:将两个已排序的子序列合并成一个最终的排序序列。

时间复杂度:

  • 最好情况: O(n log n)
  • 平均情况: O(n log n)
  • 最坏情况: O(n log n)
function mergeSort(arr) {  if (arr.length <= 1) {  return arr;  }  const middle = Math.floor(arr.length / 2);  const left = arr.slice(0, middle);  const right = arr.slice(middle);  return merge(mergeSort(left), mergeSort(right));  
}  function merge(left, right) {  let result = [];  let leftIndex = 0;  let rightIndex = 0;  while (leftIndex < left.length && rightIndex < right.length) {  if (left[leftIndex] < right[rightIndex]) {  result.push(left[leftIndex]);  leftIndex++;  } else {  result.push(right[rightIndex]);  rightIndex++;  }  }  return result.concat(left.slice(leftIndex)).concat(right.slice(rightIndex));  
}

6. 堆排序 (Heap Sort)

堆排序(Heap Sort)是一种基于堆(Heap)这种数据结构的比较排序算法。堆是一个近似完全二叉树的结构,分为最大堆(Max Heap)和最小堆(Min Heap)。在最大堆中,每个节点的值都大于或等于其子节点的值;在最小堆中,每个节点的值都小于或等于其子节点的值。堆排序通常使用最大堆来实现升序排序

堆排序原理:

  1. 构建最大堆:
  • 将数组看作一个完全二叉树,构建最大堆。
  • 从最后一个非叶子节点开始,向上依次调整堆,使得每个子树都满足最大堆的性质。

     2.堆排序过程:

  • 将堆顶元素(最大值)与堆的最后一个元素交换。
  • 堆的大小减1,重新调整堆顶元素所在的子树,使其满足最大堆的性质。
  • 重复上述步骤,直到堆的大小为1。

时间复杂度:

  • 最好情况: O(n log n)
  • 平均情况: O(n log n)
  • 最坏情况: O(n log n)
function heapSort(arr) {  let n = arr.length;  // 构建最大堆  for (let i = Math.floor(n / 2) - 1; i >= 0; i--) {  heapify(arr, n, i);  }  // 一个个从堆顶取出元素  for (let i = n - 1; i > 0; i--) {  // 交换当前堆顶(最大值)和最后一个元素  [arr[0], arr[i]] = [arr[i], arr[0]];  // 重新调整堆  heapify(arr, i, 0);  }  return arr;  
}  function heapify(arr, n, i) {  let largest = i;  //最大子节点let left = 2 * i + 1;  //左子节点let right = 2 * i + 2;  //右子节点//如果左子节点存在且大于当前最大子节点if (left < n && arr[left] > arr[largest]) {  largest = left;  }  //如果右子节点存在且大于当前最大子节点if (right < n && arr[right] > arr[largest]) {  largest = right;  }  //如果最大值不是当前子节点,则交换 if (largest !== i) {  [arr[i], arr[largest]] = [arr[largest], arr[i]];  heapify(arr, n, largest);  }  
}

http://www.yayakq.cn/news/617186/

相关文章:

  • 网站设计常见问题怎么样让公司网站
  • 怎么快速做网站文章网站建设如何
  • 保定网站建设价格免费网站推广文章
  • 阿里巴巴官网首页1688电商网站seo方案
  • 网站建设人员职责分布公司不需要做网站了
  • 网站开发简单wordpress 下载页面模板怎么用
  • 有口碑的网站建设公司江西南昌网站建设服务
  • 房产集团网站建设网站免费申请建站
  • 杭州企业网站设计微信公众号后天网站开发
  • 厦门网站建设及维护怎么做网站需求分析
  • 加强门户网站建设与管理办法95资料库
  • 网站统计关键词中国外包加工网
  • 网站快速排名技巧网页设计与实训布置课堂作业
  • 网站开发项目设计文档php网站开发实用技术课后习题
  • 门网站源码直播app制作公司
  • 网站建设中 目录怎么做更好有声小说网站开发
  • 广东个人备案网站内容网站动态好还是静态好
  • 网站信息平台建设方案青岛房产网签查询系统
  • 电子商务网站建设实训大连工业大学怎么样
  • 南昌做网站的流程长沙网站建设规划
  • 北京南站列车时刻表山东省建设厅定额网站
  • 做印刷哪个网站好简述网站的制作步骤
  • 新沂建设工程交易中心优化绿松石是什么意思
  • 怎么做网站或APP清博大数据舆情监测平台
  • 网站容量一个虚拟空间做两个网站
  • 建设网站建站公司家居设计案例
  • 绣花图案设计网站爱用建站正规吗
  • 常宁做网站建设网站的必要与可行性
  • 漳州手机网站开发广州网站优化地址
  • 网站各个阶段推广公司网站建设7个基本流程