当前位置: 首页 > news >正文

医院网站建设安全协议深圳 网页设计公司

医院网站建设安全协议,深圳 网页设计公司,wordpress mx主题VIP,深圳十大工业设计公司系列文章目录 Python 算法学习:打家劫舍问题 文章目录 系列文章目录一、算法需求二、解题思路三、具体方法源码方法1:动态规划(自底向上)方法2:动态规划(自顶向下)方法3:优化的动态…

系列文章目录

Python 算法学习:打家劫舍问题


文章目录

  • 系列文章目录
  • 一、算法需求
  • 二、解题思路
  • 三、具体方法+源码
    • 方法1:动态规划(自底向上)
    • 方法2:动态规划(自顶向下)
    • 方法3:优化的动态规划
    • 方法4:递归
  • 总结


一、算法需求

“打家劫舍”问题是一个经典的动态规划问题,通常用来描述一个小偷在一条街上偷窃房屋的场景。每间房屋都有一定数量的现金,小偷需要决定偷哪些房屋以最大化他的收益。但是,小偷面临一个限制:如果两间相邻的房屋在同一晚上被偷,那么防盗系统会触发报警。因此,小偷不能偷窃相邻的房屋。


二、解题思路

动态规划: 定义一个数组 dp,其中 dp[i] 表示到第 i 间房屋为止能偷到的最大金额。状态转移方程是 dp[i] = max(dp[i-1], dp[i-2] + nums[i]),表示可以选择偷当前房子(前提是不偷前一个房子)或者不偷当前房子(延续前一个房子的决策)。

贪心算法: 虽然不总是最优,但可以作为一种尝试。在每一步选择当前能获得的最大金额,而不考虑未来的房子。

递归: 通过递归函数模拟决策过程,考虑偷或不偷当前房子,并取两种选择中的最大值。

优化空间: 使用两个变量代替数组,减少空间复杂度。


三、具体方法+源码

方法1:动态规划(自底向上)

状态定义:dp[i] 表示到第 i 个房子为止能偷到的最大金额。

计算过程:

dp[0] = 2(只考虑第一个房子)
dp[1] = max(2, 7) = 7(考虑第一个和第二个房子)
dp[2] = max(7, 2+9) = 9(考虑第二个和第三个房子)
dp[3] = max(9, 7+3) = 10(考虑第三个和第四个房子)
dp[4] = max(10, 9+1) = 12(考虑第四个和第五个房子)
结果:12

代码如下:

def rob1(nums):if not nums:return 0if len(nums) == 1:return nums[0]dp = [0] * len(nums)dp[0] = nums[0]dp[1] = max(nums[0], nums[1])for i in range(2, len(nums)):dp[i] = max(dp[i-1], dp[i-2] + nums[i])return dp[-1]# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob1(nums))

方法2:动态规划(自顶向下)

计算过程:

从 rob(0) 开始
rob(1) = max(rob(2), rob(3)) = max(7, 9) = 9
rob(2) = max(rob(3), rob(4) + 2) = max(9, 10) = 10
rob(3) = max(rob(4), rob(5) + 3) = max(9, 12) = 12
rob(4) = max(rob(5), rob(6) + 1) = max(7, 12) = 12
结果:12

代码如下:

def rob2(nums):memo = {}def rob(i):if i >= len(nums):return 0if i in memo:return memo[i]memo[i] = max(rob(i+1), nums[i] + rob(i+2))return memo[i]return rob(0)# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob2(nums))

方法3:优化的动态规划

计算过程:

prev = 2, curr = 7
prev = 7, curr = 9
prev = 9, curr = 10
prev = 10, curr = 12
结果:12

代码如下:

def rob3(nums):if not nums:return 0if len(nums) == 1:return nums[0]prev, curr = 0, 0for num in nums:prev, curr = curr, max(prev + num, curr)return curr# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob3(nums))

方法4:递归

计算过程:

helper(0) = max(helper(1), helper(2) + 2) = max(7, 9) = 9
helper(1) = max(helper(2), helper(3) + 7) = max(9, 10) = 10
helper(2) = max(helper(3), helper(4) + 9) = max(10, 12) = 12
helper(3) = max(helper(4), helper(5) + 3) = max(9, 12) = 12
helper(4) = max(helper(5), 1) = 12
结果:12

代码如下:

def rob4(nums):def helper(i):if i == len(nums):return 0if i == len(nums) - 1:return nums[i]return max(helper(i+1), nums[i] + helper(i+2))return helper(0)# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob4(nums))

总结

这个问题在算法学习中非常重要,因为它展示了如何使用动态规划解决具有重叠子问题和最优子结构特性的问题。它也常用于面试中,考察候选人对动态规划的理解和应用能力。

这个问题的变种也很多,比如考虑环形街道的情况,或者房屋之间的防盗系统有不同的触发条件等。

http://www.yayakq.cn/news/530936/

相关文章:

  • 哪些网站可以做平面设计挣钱中国电力建设协会网站
  • 做服装必须看的十大网站杭州软件开发培训学校
  • 广西 网站开发前端简历
  • 中国好公司网站建设网站正在建设中 模板 下载
  • 建设企业银行网站哪里有做设备的
  • 网页设计制作网站模板图片wordpress修改头像
  • 发布网站需要备案吗网站建设推广价格
  • 什么网站免费制作wordpress 阿里云主机
  • 网站定制那个好长春网站开发推荐
  • 广州最发达的五个区株洲关键词优化费用
  • 提供网站制作公司电话网站制作公司 首推万维科技
  • 网站地址是什么网络规划设计师 第2版 ed2k
  • 秦皇岛网站制作 微商城建设汽车网站建设流程
  • 网站空间可以通过什么获取苏州软件外包公司有哪些
  • 家居企业网站建设报价wordpress 多说头像
  • 最常见的企业建站程序有在线做文档的网站
  • 网站维护发展医疗网站开发ppt
  • 国外网站顶部菜单设计wordpress+简繁
  • 网站开发的进度表办一家建筑公司怎么样
  • 网站架构的组成部分小广告怎么做
  • 网站怎么做效果好开发平台价格
  • 做网站分辨率多少高端建设网页
  • 广州哪个公司做网站好办公室装修设计理念简短范文
  • 教师招聘网站长城建设集团长沙新媒体公司排名
  • 邢台做网站的那好网站优化效果
  • 网站 免费空间wordpress author.php
  • html5网站制作软件主流的网站开发工具
  • 个人网站制作成品凡科建站模板
  • 怎么建立网站 个人电商设计怎么样
  • 好网站建设公司服务wordpress分类加密