当前位置: 首页 > news >正文

深圳尼高网站建设有关网站建设的知识

深圳尼高网站建设,有关网站建设的知识,怎么搭建自己的网站,WordPress网站远程访问Aggregations ES 的聚合可以总结为三类:指标聚合、统计聚合、其他分析聚合。 Metric aggregations: 计算 field 的指标值,例如平均值、最大值、和等指标Bucket aggregations: 基于 field 的值、范围、或其他标准对 doc 分类&…

Aggregations

ES 的聚合可以总结为三类:指标聚合、统计聚合、其他分析聚合。

  • Metric aggregations: 计算 field 的指标值,例如平均值、最大值、和等指标
  • Bucket aggregations: 基于 field 的值、范围、或其他标准对 doc 分类,每一类都是一个 bucketbin
  • Pipeline aggregations: 通过其他 取代 doc 或者 field 作为输入
GET /my-index-000001/_search
{"aggs": {...}
}

在查询中 aggs 的具体使用方法都在这一章,包括多个聚合查询、嵌套聚合查询等。

一、Bucket aggregations

桶(bucket)聚合,根据 给出的 标准(criterion)将 doc 放入不同的桶中,并统计在每个桶(bucket)中的 文档(doc)数量。桶(bucket)聚合可以创建子聚合,子聚合是基于父聚合的结果进行创建。

search.max_buckets 该参数用于限制在查询中返回的桶的数量,桶(bucket)聚合共有如下方法:

1.1 Adjacency matrix

一个桶聚合返回一个邻接矩阵。

1.2 Auto-interval date histogram

日期直方图(Date histogram) 类似的多数据桶聚合。日期直方图(Date histogram) 在聚合时根据给定的时间间隔进行聚合,结果中 桶(bucket)的数量不确定,依赖于文档(doc)中对应字段的数据范围。auto_date_histogram 聚合是给定桶(bucket)的数量,由 ES 自动选择聚合的时间间隔。

POST /sales/_search?size=0
{"aggs": {"sales_over_time": {"auto_date_histogram": {"field": "date","buckets": 10}}}
}
1.3 Categorize text

对文本进行分类,将具有相似结果的 text 类型收纳到一个 桶(bucket)中。

1.4 Children

一种特殊的单桶聚合,用于选择具有指定类型(如 join 类型)的子文档。

1.5 Composite
1.6 Date histogram

基于 时间(fidld 类型 为 date)的直方图。尽管可以使用 普通的直方图,完成类似于 date_histogram 直方图的功能,但 date_histogram 为时间类型提供了更准确描述时间间隔的方式。


POST /sales/_search?size=0
{"aggs": {"sales_over_time": {"date_histogram": {"field": "my_date","calendar_interval": "month"}}}
}

查询 my_date 字段每个月的 文档(doc)数量。

这里值得注意的是,时间间隔的选择有两种方式,一种是 周期间隔(Calendar intervals),另外一种是 固定间隔(Fixed intervals),分别对应参数 calendar_intervalfixed_interval

1.7 Date range

专门用于 时间(fidld 类型 为 date)的范围聚合。该聚合与普通范围聚合的主要区别在于,fromto 可以用日期数学表达式(Date Math )表示,而且还可以指定日期格式。date_range 此聚合包括from 字段的文档,但不包括每个范围内 to 所表示的文档。

POST /my_index/_search?size=0
{"aggs": {"range": {"date_range": {"field": "@timestamp","time_zone": "CET","ranges": [{ "to": "2016/02/01" }, { "from": "2016/02/01", "to" : "now/d" }, { "from": "now/d" }]}}}
}
1.8 Diversified sampler
1.9 Filter

缩小 聚合中的 文档集合。

POST /sales/_search?size=0&filter_path=aggregations
{"aggs": {"avg_price": { "avg": { "field": "price" } },"t_shirts": {"filter": { "term": { "type": "t-shirt" } },"aggs": {"avg_price": { "avg": { "field": "price" } }}}}
}### response
{"aggregations": {"avg_price": { "value": 140.71428571428572 },"t_shirts": {"doc_count": 3,"avg_price": { "value": 128.33333333333334 }}}
}
  • avg_price 返回 sales 索引中所有文档 price 字段的平均值
  • t_shirts.avg_price 返回 sales 索引中 type 字段为 t-shirt 的文档 的 price 字段的平均值
1.10 Filters
1.11 Geo-distance
1.12 Geohash grid
1.13 Geohex grid
1.14 Geotile grid
1.15 Global
1.16 Histogram

直方图聚合:依据某个 field 的值,将数据按间隔,放入不同的 桶(bucket)中。桶的取值范围和文档 该字段的取值范围一致。其中桶的 键 的计算方法为
b u c k e t k e y = M a t h . f l o o r ( ( v a l u e − o f f s e t ) / i n t e r v a l ) ∗ i n t e r v a l + o f f s e t bucket_key = Math.floor((value - offset) / interval) * interval + offset bucketkey=Math.floor((valueoffset)/interval)interval+offset
第一个桶(bucket)的 键 是根据 field 字段值的最小值计算出来的,最后一个桶(bucket)的 键 以同样的方式用 field 字段值的最大值计算。

POST /sales/_search?size=0
{"aggs": {"prices": {"histogram": {"field": "price","interval": 50}}}
}
1.17 IP prefix
1.18 IP range
1.19 Missing

基于 索引 中所有文档(doc),缺少的 缺少的某个 字段(field)或 该字段(field)的值为 NULL 的情况来创建桶。

POST /sales/_search?size=0
{"aggs": {"products_without_a_price": {"missing": { "field": "price" }}}
}

获得 sales 索引中,没有 price 字段或 price 字段值为 NULL 的 文档(doc)总数。

1.20 Multi Terms

多个 terms 聚合的组合,主要用于 按文档数量排序,或按复合键的度量聚合排序并获得前 N 个结果时。

GET /products/_search
{"aggs": {"genres_and_products": {"multi_terms": {"terms": [{"field": "genre" }, {"field": "product"}]}}}
}

注意: 如果不断的使用同一组 field 做聚合查询,则可以将 本组 field 的值组合成新的 字段,并在新的字段上使用 terms 聚合。

1.20 Nested
1.21 Parent
1.22 Range

通过定义一组范围,其中每个范围代表一个桶。在聚合过程中,从每个文档(doc)中提取的值将与每个桶范围进行核对,并将相关/匹配文档 放入桶(bucket)。range 此聚合包括from 字段的文档,但不包括每个范围内 to 所表示的文档。

GET sales/_search
{"aggs": {"price_ranges": {"range": {"field": "price","ranges": [{ "to": 100.0 },{ "from": 100.0, "to": 200.0 },{ "from": 200.0 }]}}}
}
1.23 Rare terms
1.24 Reverse nested
1.25 Sampler
1.26 Significant terms
1.27 Significant text
1.28 Terms

根据 field 的值来创建桶(bucket),field 中的每一个 值 都对应一个 桶(bucket


GET /_search
{"aggs": {"genres": {"terms": { "field": "genre" }}}
}
1.29 Variable width histogram
1.30 Subtleties of bucketing range fields

二、Metrics aggregations

计算 桶(bucket)内,文档(doc)某个字段(field)的度量值。

2.1 Avg

平均值

POST /exams/_search?size=0
{"runtime_mappings": {"grade.corrected": {"type": "double","script": {"source": "emit(Math.min(100, doc['grade'].value * params.correction))","params": {"correction": 1.2}}}},"aggs": {"avg_corrected_grade": {"avg": {"field": "grade.corrected"}}}
}

注意: 用于计算度量的字段可以来自于 文档(doc)某个字段(field),也可以来自于脚本结合 runtime field 字段。

2.2 Boxplot

箱图

2.3 Cardinality

估计某个字段(field)内有多少个不同的值

POST /sales/_search?size=0
{"aggs": {"type_count": {"cardinality": {"field": "type"}}}
}

注意: 计算 type 字段内有多少个不同的值

2.4 Extended stats

一次统计 多个指标值,包括 min(最小值)、max(最大值)、sum(求和)、count(计数)、avg(平均值)、sum_of_squares()、variance()、std_deviation()、std_deviation_bounds()

2.5 Geo-bounds
2.6 Geo-centroid
2.7 Geo-Line
2.8 Matrix stats
2.9 Max

最大值

2.10 Median absolute deviation
2.11 Min

最小值

2.12 Percentile ranks

某个值在 在百分位数的排名。

GET latency/_search
{"size": 0,"aggs": {"load_time_ranks": {"percentile_ranks": {"field": "load_time",   "values": [ 500, 600 ]}}}
}

500, 600 这两个数字 在 load_time 字段中位置的百分比(load_time 字段的值从小到大依次排列)

2.13 Percentiles

百分位数聚合。

GET latency/_search
{"size": 0,"aggs": {"load_time_outlier": {"percentiles": {"field": "load_time","percents": [ 95, 99, 99.9 ] }}}
}

latency 索引的 load_time 字段的 959999.9 分位数。

2.14 Rate
2.15 Scripted metric

使用脚本执行的指标聚合以提供指标输出

2.16 Stats

一次统计 多个指标值, 包括 min(最小值)、max(最大值)、sum(求和)、count(计数)、avg(平均值)


POST /exams/_search?size=0
{"aggs": {"grades_stats": { "stats": { "field": "grade" } }}
}
2.17 String stats

keyword 中一次统计 多个指标值, 包括 count(计数,非空)、min_length(最小长度)、max_length(最大长度)、avg_length(平均长度)、entropy(香农熵)

2.18 Sum

求和

2.19 T-test
2.20 Top hits

取 桶(bucket)内,按照 某种 排序(sort)匹配度靠前(size)的文档(doc

POST /sales/_search?size=0
{"aggs": {"top_tags": {"terms": {"field": "type","size": 3},"aggs": {"top_sales_hits": {"top_hits": {"sort": [{"date": {"order": "desc"}}],"_source": {"includes": [ "date", "price" ]},"size": 1}}}}}
}
2.21 Top metrics

top_metrics 聚合按照 sort 排序,选择 size 个文档中,metrics 指定的字段返回。

### 写入数据
POST /test/_bulk?refresh
{"index": {}}
{"s": 1, "m": 3.1415}
{"index": {}}
{"s": 2, "m": 1.0}
{"index": {}}
{"s": 3, "m": 2.71828}### 查询
POST /test/_search?filter_path=aggregations
{"aggs": {"tm": {"top_metrics": {"metrics": {"field": "m"},"sort": {"s": "desc"},"size": 1}}}
}### Response
{"aggregations": {"tm": {"top": [ {"sort": [3], "metrics": {"m": 2.718280076980591 } } ]}}
}

top_metrics 聚合中,文档(doc)按照 s 字段排倒序("sort": {"s": "desc"}),取前 1 个("size": 1),返回 m 字段。

2.22 Value count

计数

2.23 Weighted avg

加权平均值

三、Pipeline aggregations

管道聚合(Pipeline aggregations)基于其他的聚合结果进行聚合,并将结果添加到聚合中,管道聚合主要分为两类

  • Parent: (父级聚合)
    管道聚合的一个系列,可获得其父聚合的输出,并能计算新的桶或新的聚合,以添加到现有的桶中。
    同胞聚合
  • Sibling:(同级聚合)
    提供同级聚合输出的管道聚合,能够计算与同级聚合处于同一级别的新聚合。
3.1 Average bucket

Sibling
计算指定指标的平均值,指定的度量必须是数字。同级聚合必须是多桶聚合。

PUT my_index
{"mappings": {"properties": {"@timestamp" : {"type" : "date","format" : "[yyyy/MM/dd]"},"my_field" : {"type" : "keyword"},"my_other_field" : {"type" : "float"}}}
}POST my_index/_bulk
{"index":{}}
{"@timestamp": "2024/03/01", "my_other_field": 5}
{"index":{}}
{"@timestamp": "2024/03/02", "my_other_field": 6}
{"index":{}}
{"@timestamp": "2024/04/01", "my_other_field": 7}
{"index":{}}
{"@timestamp": "2024/05/01", "my_other_field": 8}POST my_index/_search
{"size": 0,"aggs": {"sales_per_month": {"date_histogram": {"field": "@timestamp","calendar_interval": "month"},"aggs": {"sales": {"avg": {"field": "my_other_field"}}}},"avg_monthly_sales": {"avg_bucket": {"buckets_path": "sales_per_month>sales" }}}
}
3.2 Bucket script

Parent
执行一个脚本,该脚本可以对父级多桶聚合中,每个桶指定的指标执行计算。指定的指标必须是数值,脚本必须返回数值。

POST my_index/_search
{"size": 0,"aggs": {"sales_per_month": {"date_histogram": {"field": "@timestamp","calendar_interval": "month"},"aggs": {"sales": {"avg": {"field": "my_other_field"}},"percentage": {"bucket_script": {"buckets_path": {"tShirtSales": "sales","num": "_count"},"script": "params.tShirtSales / params.num  * 100"}}}}}
}
3.3 Bucket count K-S test
3.4 Bucket correlation
3.5 Bucket selector
3.6 Bucket sort
3.7 Cumulative cardinality
3.8 Cumulative sum
3.9 Derivative

Parent
用于计算父级直方图(或日期直方图)聚合中指定度量的导数,指定的度量值必须是数值。

POST my_index/_search
{"size": 0,"aggs": {"sales_per_month": {"date_histogram": {"field": "@timestamp","calendar_interval": "month"},"aggs": {"sales": {"avg": {"field": "my_other_field"}},"sales_deriv": {"derivative": {"buckets_path": "sales" }},"sales_deriv2": {"derivative": {"buckets_path": "sales_deriv" }}}}}
}
3.10 Extended stats bucket
3.11 Inference bucket
3.12 Max bucket
3.13 Min bucket
3.14 Moving function
3.15 Moving percentiles
3.16 Normalize
3.17 Percentiles bucket
3.18 Serial differencing
3.19 Stats bucket
3.20 Sum bucket
http://www.yayakq.cn/news/193989/

相关文章:

  • 网站建设注意事情wordpress主题二级菜单栏
  • 有了网站怎样做公众号深圳网上申请营业执照流程
  • 英文网站备案画廊网站画廊网站建设建设
  • 公司网站如何维护乔拓云微信小程序官网
  • 装修设计公司哪个好seo在线短视频发布页运营
  • 思明自助建站软件大型网站制作导图
  • 注册网站可以注销嘛山东省建设协会网站
  • 做租赁的行业网站怎么把网站模板上传到自己的网站
  • 专业做农牧应聘的网站如何查询网站打开速度
  • 怎么自己做网站的优化微信小程序开发用什么工具
  • 网站备案 注意网站建设课程设计实验报告
  • 电子商务网站建设经费网站建设的流程图
  • 网站制作风格视频结交网站怎么做
  • 兰州起点网站建设内蒙古网站建设公司
  • 电商网站平台建设视频建设网站人员名单
  • 国外医疗网站模板网站开发时间段
  • 网站怎么做订单云盘搜索引擎入口
  • 广州企业网络推广运营技巧四川企业seo
  • 可以做ps的网站龙岗区网站建设哪个公司好
  • 哪个行业该做网站但是没有做wordpress不懂php
  • 关于企业官方网站建设的ppt雏鸟app网站推广
  • 吉利网站建设舞台搭建
  • 网站开发综合技能实训心得体会七牛图床 wordpress
  • wordpress有多少网站大学生网络营销策划书模板
  • 成品网站源码1688danji6怎么在360上做推广
  • 网站开发保障合同互联网seo是什么意思
  • 公司域名注册注意事项seo外包公司如何优化
  • 长沙简单的网站建设学校网站建设流程
  • 北京网页制作网站展示互动
  • 网站设计找谁做门户定制网站建设公司