当前位置: 首页 > news >正文

本地的番禺网站建设电子政务门户网站建设

本地的番禺网站建设,电子政务门户网站建设,做平台网站外包多少钱啊,移动网站屏蔽前言 如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。 本篇 Tutorial 主要介绍了 CL 中的一些基本概念以及一些过往的方法。 Problem Definition Continual Learning 和 Increm…

前言

如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。

本篇 Tutorial 主要介绍了 CL 中的一些基本概念以及一些过往的方法。


Problem Definition

Continual LearningIncremental learning 以及 Lifelong learning 属于同一概念, 其所关心的场景均为「如何在新数据持续到来的情况下更新模型?」;并且由于存储空间和隐私问题,流式数据通常不能被存储。

CL 的整体目标为最小化所有已见任务的期望损失,如下所示:

在这里插入图片描述
CL 又细分为三类( { Y t } \{\mathcal{Y}^t\} {Yt} 表示 t t t 时刻的类别标签集合, P ( Y t ) P(\mathcal{Y}^t) P(Yt) 表示类别分布, P ( X t ) P(\mathcal{X}^t) P(Xt) 表示输入数据分布):

  • Class-Incremental Learning (CIL): { Y t } ⊂ { Y t + 1 } , P ( Y t ) ≠ P ( Y t + 1 ) , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} \subset\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{Y}^t\right) \neq P\left(\mathcal{Y}^{t+1}\right),P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}{Yt+1},P(Yt)=P(Yt+1),P(Xt)=P(Xt+1)
  • Task-Incremental Learning (TIL): { Y t } ≠ { Y t + 1 } , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} \neq\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}={Yt+1},P(Xt)=P(Xt+1),测试时任务 id ( t ) \text{id}(t) id(t) 已知
  • Domain-Incremental Learning (DIL): { Y t } = { Y t + 1 } , P ( Y t ) = P ( Y t + 1 ) , P ( X t ) ≠ P ( X t + 1 ) \left\{\mathcal{Y}^t\right\} =\left\{\mathcal{Y}^{t+1}\right\},P\left(\mathcal{Y}^t\right) =P\left(\mathcal{Y}^{t+1}\right),P\left(\mathcal{X}^t\right) \neq P\left(\mathcal{X}^{t+1}\right) {Yt}={Yt+1},P(Yt)=P(Yt+1),P(Xt)=P(Xt+1)

在这里插入图片描述

与其它相关领域的区别

Multi-task Learning:(1)同时拿到所有任务的数据;(2)离线训练
在这里插入图片描述
Transfer Learning:(1)只有两个阶段;(2)并且不关注第一阶段,即 Source 的性能
在这里插入图片描述
Meta-Learning:(1)离线训练;(2)不关心 meta-train 的性能
在这里插入图片描述


CL 的一些传统做法

具体方法分类如下:
在这里插入图片描述

Data-Centric Methods

核心思想:保存一部分先前数据,在面对新任务时,可以作为训练损失的正则项 (hosting the data to replay former knowledge when learning new, or exert regularization terms with former data)

保存一部分数据的过往方法:

  • [Welling ICML’09] 计算 Embedding 空间的类中心,选取离类中心近的样本。
  • [Rebuffi et al. CVPR’17] 每个类依次贪心选取样本,使得样本 Embedding 均值逼近类中心。
  • [Shin et al. NIPS’17] [Gao and Liu ICML’23] 使用生成式模型学习每个类的数据分布。

将先前数据作为新任务训练损失正则项的一些方法:

  • [Lopez-Paz and Ranzato NIPS’17] 训练时要求模型不仅在新任务上做好,在旧任务上也要做的比之前好;模型在新任务和旧任务上的损失梯度夹角为正。

一些可能的问题:

  • [Verwimp et al. ICCV’21] Data replay 可能会遭遇 overfitting.
  • [Wu NeurIPS’18] 生成式模型也会出现灾难性遗忘。

Model-Centric Methods

核心思想:调整网络结构,或者识别网络中的重要参数并限制其变化

  • [Kirkpatrick et al. PNAS’17] 训练新任务时,限制模型参数的变化,越重要的参数权重越高

Algorithm-Centric Methods

核心思想:设计一些训练机制避免旧模型的遗忘 (design training mechanisms to prevent the forgetting of old model)

知识蒸馏 (Knowledge Distillation) 的相关方法:

  • [Li et al. TPAMI’17] 将旧模型作为 Teacher,训练时模型不仅要做好当前任务,在过去任务上需要表现得和 Teacher 尽可能相近。

模型纠正 (Model Rectify) 的相关方法:

  • 例如「降低新类输出概率 Logit」和「降低最后一层新类的权重矩阵」。

Trends of CL

最后是 CL 近几年的整体发展趋势:
请添加图片描述


参考资料

  • IJCAI23 - Continual Learning Tutorial
  • PyCIL - A Python Toolbox for Class-Incremental Learning
http://www.yayakq.cn/news/928697/

相关文章:

  • 百度手机网站生成分公司vi设计
  • 网站开发需要懂哪些制作网页的流程
  • php+mysql网站开发教程口碑最好的旅游网站
  • 惠城网站建设有哪些网站的运营方式
  • 烟台微信网站建设做网页设计网站有哪些
  • 广西住房城乡和建设厅网站自己做网站用买域名吗
  • 山东建设厅网站首页网站建设开发公司哪家好
  • 兰溪网站搜索引擎营销漏斗模型
  • 网站建设行业市场规模网站开发保密协议模板
  • 建网站新科网站建设高端旅游定制网站
  • 微信微网站是什么格式低价建设手机网站
  • 泰州网站建设专业团队成都明腾网站建设公司
  • 网站开发大公司需要资格证吗100款软件免费下载
  • 觉得自己做的网站土怎么办wordpress相关书籍
  • 建设网站技术人员先进事迹做的很好的淘宝客网站
  • 集团网站建设方案书服装品牌网站开发php
  • 郑州网站建设系统介绍微信抽奖小程序怎么做
  • 网站开发毕业周记餐饮营销方案
  • 成都的教育品牌网站建设wordpress做站群
  • 网站用什么字体做正文wordpress 用户登录记录
  • 陵水网站建设费用加盟装修公司哪家不要加盟费
  • 怎么删除建站网站程序电影网站如何优化
  • 网站图标psd网站查询域名ip查询
  • 无经验做网站wordpress 文章背景色
  • 沧州网站营销推广潍坊市房屋和城乡建设局网站
  • 应届生招聘去哪个网站空间有了怎么做网站
  • 做优秀网站电子商务网站建设与管理教案
  • wordpress菜单属性益阳网站seo
  • 有网站代码怎么建站seopeixunwang
  • 网站后台文章列表里的每篇文章的文字全部乱码怎么办?阳江问政平台投诉平台