当前位置: 首页 > news >正文

o基础学建网站网站制作怎样做背景

o基础学建网站,网站制作怎样做背景,网站建设师特点,江阴网站制作设计智能优化算法:浣熊优化算法 文章目录 智能优化算法:浣熊优化算法1.浣熊优化算法1.1 初始化1.2 阶段一:狩猎和攻击(探索阶段) 2.实验结果3.参考文献4. Matlab 摘要:浣熊优化算法(Coati Optimizat…

智能优化算法:浣熊优化算法

文章目录

  • 智能优化算法:浣熊优化算法
    • 1.浣熊优化算法
      • 1.1 初始化
      • 1.2 阶段一:狩猎和攻击(探索阶段)
    • 2.实验结果
    • 3.参考文献
    • 4. Matlab

摘要:浣熊优化算法(Coati Optimization Algorithm(COA)),是于2022年提出的一种基于浣熊行为的优化算法,该算法通过模拟浣熊猎食行为来进行寻优,具有寻优能力强,收敛速度快等特点

1.浣熊优化算法

1.1 初始化

与其他优化算法类似,在寻优空间里随机初始化种群:
x i , j = l b j + r ⋅ ( u b j − l b j ) (2) x_{i, j}=l b_j+r \cdot\left(u b_j-l b_j\right) \tag{2} xi,j=lbj+r(ubjlbj)(2)
其中 x i , j x_{i,j} xi,j为个体, l b j lb_j lbj为寻优下边界, u b j ub_j ubj为寻优上边界, r r r为[0,1]之间的随机数。

1.2 阶段一:狩猎和攻击(探索阶段)

在搜索空间中更新coatis种群的第一阶段是基于模拟它们攻击鬣蜥(Iguana)时的策略进行建模的。在这一策略中,一群coatis爬上树去够一只鬣蜥并吓唬它。其他几只coatis在树下等待,直到鬣蜥摔倒在地。鬣蜥落地后,coatis攻击并猎杀它。这种策略导致coatis移动到搜索空间的不同位置,这表明了COA在解决问题空间的全局搜索中的探索能力。

在COA设计中,假设种群中最好成员的位置是鬣蜥的位置。也有人假设,一半的鬣蜥爬上树,另一半等待鬣蜥掉到地上。因此,使用等式(4)对从树上升起的涂层的位置进行数学模拟。
X i P 1 : x i , j P 1 = x i , j + r ⋅ ( Iguana  j − I ⋅ x i , j ) , for  i = 1 , 2 , … , ⌊ N 2 ⌋ a n d j = 1 , 2 , … , m . (4) X_i^{P 1}: x_{i, j}^{P 1}=x_{i, j}+r \cdot\left(\text { Iguana }_j-I \cdot x_{i, j}\right), \text { for } i=1,2, \ldots,\left\lfloor\frac{N}{2}\right\rfloor \\and j=1,2, \ldots, m. \tag{4} XiP1:xi,jP1=xi,j+r( Iguana jIxi,j), for i=1,2,,2Nandj=1,2,,m.(4)
鬣蜥摔倒在地后,它被放置在搜索空间中的一个随机位置。基于这个随机位置,地面上的涂层在搜索空间中移动,这是使用等式(5)和(6)模拟的。

Iguana  G : Iguana  a j G = l b j + r ⋅ ( u b j − l b j ) , j = 1 , 2 , … , m ,  (5) \begin{aligned} & \text { Iguana }^G: \text { Iguana } a_j^G=l b_j+r \cdot\left(u b_j-l b_j\right), j=1,2, \ldots, m \text {, } \end{aligned}\tag{5}  Iguana G: Iguana ajG=lbj+r(ubjlbj),j=1,2,,m(5)

X i p 1 : x i , j P 1 = { x i , j + r ⋅ ( Iguana  j j G − I ⋅ x i , j ) , F Iguana  G < F i , x i , j + r ⋅ ( x i , j − Iguana  j G ) , else,  for  i = ⌊ N 2 ⌋ + 1 , ⌊ N 2 ⌋ + 2 , … , N and  j = 1 , 2 , … , m .  (6) \begin{aligned} & X_i^{p 1}: x_{i, j}^{P 1}=\left\{\begin{array}{cl} x_{i, j}+r \cdot\left(\text { Iguana } j_j^G-I \cdot x_{i, j}\right), & F_{\text {Iguana }}^G<F_i, \\ x_{i, j}+r \cdot\left(x_{i, j}-\text { Iguana }_j^G\right), & \text { else, } \end{array}\right. \\ & \text { for } i=\left\lfloor\frac{N}{2}\right\rfloor+1,\left\lfloor\frac{N}{2}\right\rfloor+2, \ldots, N \text { and } j=1,2, \ldots, m \text {. } \\ & \end{aligned}\tag{6} Xip1:xi,jP1={xi,j+r( Iguana jjGIxi,j),xi,j+r(xi,j Iguana jG),FIguana G<Fi, else,  for i=2N+1,2N+2,,N and j=1,2,,m(6)

如果更新后的个体更优则更新当前个体,否则保持原状:
X i = { X i P 1 , F i P 1 < F i X i , else.  (7) X_i=\left\{\begin{aligned} X_i^{P 1}, & F_i^{P 1}<F_i \\ X_i, & \text { else. } \end{aligned}\right. \tag{7} Xi={XiP1,Xi,FiP1<Fi else. (7)
这里 X i P 1 X_i^{P1} XiP1是更新后的新位置, I g u a n a Iguana Iguana为猎物鬣蜥的位置, r r r为[0,1]之间的随机数。I为随机选择的1或者2。

1.3 阶段二:逃离捕食者(开发阶段)

更新coatis在搜索空间中的位置的过程的第二阶段是基于coatis遇到捕食者和逃离捕食者时的自然行为进行数学建模的。当捕食者攻击一只coatis时,它会从自己的位置逃跑。Coati在这一战略中的举措使其处于接近当前位置的安全位置,这表明了COA在本地搜索中的局部搜索能力。

为了模拟这种行为,基于等式(8)和(9),在每个coatis所在的位置附近生成随机位置。
l b j local  = l b j t , u b j local  = u b j t , where  t = 1 , 2 , … , T (8) \begin{gathered} l b_j^{\text {local }}=\frac{l b_j}{t}, u b_j^{\text {local }}=\frac{u b_j}{t}, \text { where } t=1,2, \ldots, T \end{gathered}\tag{8} lbjlocal =tlbj,ubjlocal =tubj, where t=1,2,,T(8)

X i P 2 : x i , j P 2 = x i , j + ( 1 − 2 r ) ⋅ ( l b j local  + r ⋅ ( u b j local  − l b j local  ) ) , i = 1 , 2 , … , N , j = 1 , 2 , … , m (9) \begin{gathered} X_i^{P 2}: x_{i, j}^{P 2}=x_{i, j}+(1-2 r) \cdot\left(l b_j^{\text {local }}+r \cdot\left(u b_j^{\text {local }}-l b_j^{\text {local }}\right)\right), \\ i=1,2, \ldots, N, j=1,2, \ldots, m \end{gathered}\tag{9} XiP2:xi,jP2=xi,j+(12r)(lbjlocal +r(ubjlocal lbjlocal )),i=1,2,,N,j=1,2,,m(9)

其中t 为迭代次数,如果更新后的个体更优则更新当前个体,否则保持原状:
X i = { X i P 2 , F i P 2 < F i X i , else  (10) X_i=\left\{\begin{aligned} X_i^{P 2}, & F_i^{P 2}<F_i \\ X_i, & \text { else } \end{aligned}\right.\tag{10} Xi={XiP2,Xi,FiP2<Fi else (10)

算法流程图如下:

在这里插入图片描述

2.实验结果

在这里插入图片描述

3.参考文献

[1]Dehghani Mohammad,Montazeri Zeinab,Trojovská Eva,Trojovský Pavel. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems[J]. Knowledge-Based Systems,2023,259.

uristic algorithm for solving optimization problems[J]. Knowledge-Based Systems,2023,259.

4. Matlab

http://www.yayakq.cn/news/349558/

相关文章:

  • 开发网站实训的心得体会手机短视频制作软件app
  • 网站如何做服务器授权书江苏省建设考试网站准考证打印
  • 正规的编程培训机构关键词整站优化公司
  • 北京公司响应式网站建设价位上海建设网站费用
  • php开源企业网站重庆市住房和城乡建设部网站
  • 晋城市住房和城乡建设局官方网站花生壳免费域名注册
  • 济南网站开发推广旅行网站排名前十名
  • 深圳市南山区住房和建设局官方网站中国小康建设网 是个什么网站
  • 怎么查看网站是asp还是php深圳建一个网站要多少钱
  • 如何给网站加关键词鞋业有限公司网站设计
  • 怎么做淘客网站要屏蔽一个网站要怎么做
  • 不良网站浏览窗口ios开发者账号续费
  • 如何把网站的文字编辑地方门户网站运营
  • 网站添加广告源码江西 网站制作
  • 做网站获取手机号码软装设计图片
  • 腊肉网站的建设前景员工之家app官网下载地址
  • 中唯建设工程有限公司网站企业网站建设需要哪些资料信息
  • 国外上市公司网站建设北京网站优化提供商
  • 怎么做淘客网站推广域名备案信息
  • 汕头澄海地图竹子建站seo设置怎么做
  • 北京朝阳网站建设建站费用报价单
  • 网咯鸟深圳网站建设电信ip做的网站移动不能访问
  • 周口建设网站东莞高端模板建站
  • 网站建设滕州信息港小程序用什么开发
  • 建设建网站wordpress禁止主题更新
  • 网站流量 钱重庆工程建筑信息网
  • 海淀教育人才网站优化网站的步骤案列
  • 集团品牌网站建设做网站做百度竞价赚钱
  • 简述建设一个商务网站的过程临沂网站服务器价格
  • 网站建设加入购买按钮在线3d设计家官网