当前位置: 首页 > news >正文

网站开发详细报价单企业所得税怎么算举例

网站开发详细报价单,企业所得税怎么算举例,深圳动画营销推广的原因,重庆网上办PyTorch 是一个强大的开源深度学习框架,以其灵活性和动态计算图而广受欢迎。以下是 PyTorch 的详细教程,涵盖从基础到实际应用的使用方法。 1. 安装与导入 1.1 安装 PyTorch 访问 PyTorch 官方网站,根据系统、Python 版本和 CUDA 支持选择安…

PyTorch 是一个强大的开源深度学习框架,以其灵活性和动态计算图而广受欢迎。以下是 PyTorch 的详细教程,涵盖从基础到实际应用的使用方法。


1. 安装与导入

1.1 安装 PyTorch

访问 PyTorch 官方网站,根据系统、Python 版本和 CUDA 支持选择安装命令。

常用安装命令:

pip install torch torchvision torchaudio
1.2 导入库
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

2. PyTorch 基础

2.1 张量(Tensor)

张量是 PyTorch 的核心数据结构,可以看作是一个高维数组。

# 创建张量
a = torch.tensor([1.0, 2.0, 3.0])
b = torch.tensor([4.0, 5.0, 6.0])# 基本运算
c = a + b
print(c)  # 输出 tensor([5., 7., 9.])# 随机张量
random_tensor = torch.rand((2, 3))  # 2行3列随机数
print(random_tensor)

输出结果

tensor([5., 7., 9.])
tensor([[0.9980, 0.2970, 0.5257],[0.8807, 0.0471, 0.7896]])
2.2 自动求导

PyTorch 提供动态计算图支持自动求导。

x = torch.tensor(2.0, requires_grad=True)
y = x**2 + 3*x + 4y.backward()  # 自动求导
print(x.grad)  # 输出 dy/dx = 2*x + 3 = 7.0

输出结果

tensor(7.)

3. 数据加载

PyTorch 提供强大的数据加载功能。

import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader# 下载并加载 MNIST 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)

4. 构建神经网络

4.1 使用 nn.Module 构建模型
import torch.nn as nnclass SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(28 * 28, 128)self.relu = nn.ReLU()self.fc2 = nn.Linear(128, 10)self.softmax = nn.Softmax(dim=1)def forward(self, x):x = x.view(-1, 28 * 28)  # 展平输入x = self.relu(self.fc1(x))x = self.softmax(self.fc2(x))return xmodel = SimpleNN()print(model)

输出结果

SimpleNN((fc1): Linear(in_features=784, out_features=128, bias=True)(relu): ReLU()(fc2): Linear(in_features=128, out_features=10, bias=True)(softmax): Softmax(dim=1)
)

5. 模型训练

5.1 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001)
5.2 训练循环
for epoch in range(5):for images, labels in train_loader:optimizer.zero_grad()  # 梯度清零outputs = model(images)loss = criterion(outputs, labels)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新权重print(f"Epoch {epoch+1}, Loss: {loss.item()}")

完整代码

from torch import nn, optim
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoaderclass SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(28 * 28, 128)self.relu = nn.ReLU()self.fc2 = nn.Linear(128, 10)self.softmax = nn.Softmax(dim=1)def forward(self, x):x = x.view(-1, 28 * 28)  # 展平输入x = self.relu(self.fc1(x))x = self.softmax(self.fc2(x))return xmodel = SimpleNN()# 下载并加载 MNIST 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)criterion = nn.CrossEntropyLoss()  # 交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001)for epoch in range(5):for images, labels in train_loader:optimizer.zero_grad()  # 梯度清零outputs = model(images)loss = criterion(outputs, labels)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新权重print(f"Epoch {epoch + 1}, Loss: {loss.item()}")

输出结果

Epoch 1, Loss: 1.482284665107727
Epoch 2, Loss: 1.4968496561050415
Epoch 3, Loss: 1.5289227962493896
Epoch 4, Loss: 1.4832825660705566
Epoch 5, Loss: 1.5070817470550537

6. 模型评估

6.1 在测试集上评估
test_data = MNIST(root='./data', train=False, transform=transform)
test_loader = DataLoader(test_data, batch_size=32, shuffle=False)correct = 0
total = 0
with torch.no_grad():  # 禁用梯度计算for images, labels in test_loader:outputs = model(images)_, predicted = torch.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f"Test Accuracy: {correct / total * 100:.2f}%")

输出结果

Test Accuracy: 10.32%

7. GPU 加速

PyTorch 支持使用 GPU 加速。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)# 将数据也移动到 GPU
for images, labels in train_loader:images, labels = images.to(device), labels.to(device)outputs = model(images)

8. 保存与加载模型

8.1 保存模型
torch.save(model.state_dict(), 'model.pth')
8.2 加载模型
model = SimpleNN()
model.load_state_dict(torch.load('model.pth'))
model.eval()  # 切换到评估模式

9. 实际案例

9.1 CIFAR-10 图像分类
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms# CIFAR-10 数据集
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_data = CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2)self.fc1 = nn.Linear(16 * 16 * 16, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = x.view(-1, 16 * 16 * 16)x = self.fc1(x)return xmodel = CNN()
# 后续训练步骤类似

10. PyTorch 优势总结

  1. 动态计算图:支持动态构建与修改模型。
  2. 灵活性:适合研究和开发,易于调试。
  3. 强大的社区支持:广泛的教程、示例和扩展工具。

通过实践,PyTorch 能够帮助用户更好地理解和实现深度学习算法!

http://www.yayakq.cn/news/416999/

相关文章:

  • 绿色模板网站谷歌地图嵌入网站
  • 抖音里做我女朋友网站用什么做网站原型图
  • 电子商务网站建设基础项目实训做景观私活的网站
  • 海南省住房和城市建设厅网站淘宝做网站推广
  • 枣庄做网站建设找哪家asp+php+jsp网站开发
  • 网站建设开发流程百度指数网址是什么
  • 优秀甜品网站网站制作公司排名
  • 烟台H5网站设计网站由哪些部分组成部分组成部分组成
  • 多个域名绑定同一网站吗简约 网站 设计
  • 网站建设费能入长期待摊吗html网页模板资源
  • 采集电影做的网站手机网站的价值
  • 域名被墙检测什么是seo是什么意思
  • 青岛优化网站诊断网站怎么做图片动态图片大全
  • 公司网站维护费 入什么科目蜡笔小新网页制作模板
  • 外贸商城网站制作仿站多少钱
  • 宿州市建设工程质量监督站网站蚌埠网页设计培训
  • 流量对于网站盈利好网站建设网站
  • 有哪些做的好的自学网站12355能找回智慧团建密码吗
  • 如何请人做网站用自己网站域名这么做邮箱
  • 建设网站需要什么条件中国免费网站服务器免费下载
  • 新邱建设网站房房网
  • 食品网站源码中英文双语网站站点
  • 网站建设的报告淘客网站开发教程
  • 一分钟用自己的电脑做网站昌大建设土地建设
  • 电商网站设计主题dw网站管理与建设
  • 2010年4月江苏省03340网站建设与管理答案建设部网站13清单
  • 企业产品展示网站模板下载软件大全
  • 免费个人网站怎么做PHP企业网站开发实践
  • 手机如何创建个人网站动漫网站开发需求分析
  • 建立网站不公开网站建设注意哪些问题