当前位置: 首页 > news >正文

企业标识设计经典案例苏州百度关键词优化

企业标识设计经典案例,苏州百度关键词优化,宁波seo快速优化教程,西安做网站建设哪家好DeepLab复现的pytorch实现 本文复现的主要是deeplabv3。使用的数据集和之前发的文章FCN一样,没有了解的可以移步到之前发的文章中去查看一下。 1.该模型的主要结构 对于代码部分,主要只写了模型部分的,其他部分内容基本和FCN的一致&#xf…

DeepLab复现的pytorch实现

本文复现的主要是deeplabv3。使用的数据集和之前发的文章FCN一样,没有了解的可以移步到之前发的文章中去查看一下。

1.该模型的主要结构

image-20240507185117304

对于代码部分,主要只写了模型部分的,其他部分内容基本和FCN的一致,在下面也会给出完整代码仓库的地址方便大家进行学习。

from collections import OrderedDictfrom typing import Dict, Listimport torch
from torch import nn, Tensor
from torch.nn import functional as F
from .resnet_backbone import resnet50, resnet101
from .mobilenet_backbone import mobilenet_v3_largeclass IntermediateLayerGetter(nn.ModuleDict):  # 获取模型指定的中间层输出"""Module wrapper that returns intermediate layers from a modelIt has a strong assumption that the modules have been registeredinto the model in the same order as they are used.This means that one should **not** reuse the same nn.Moduletwice in the forward if you want this to work.Additionally, it is only able to query submodules that are directlyassigned to the model. So if `model` is passed, `model.feature1` canbe returned, but not `model.feature1.layer2`.Args:model (nn.Module): model on which we will extract the featuresreturn_layers (Dict[name, new_name]): a dict containing the namesof the modules for which the activations will be returned asthe key of the dict, and the value of the dict is the nameof the returned activation (which the user can specify)."""_version = 2__annotations__ = {"return_layers": Dict[str, str],}def __init__(self, model: nn.Module, return_layers: Dict[str, str]) -> None:if not set(return_layers).issubset([name for name, _ in model.named_children()]):raise ValueError("return_layers are not present in model")orig_return_layers = return_layersreturn_layers = {str(k): str(v) for k, v in return_layers.items()}# 重新构建backbone,将没有使用到的模块全部删掉layers = OrderedDict()for name, module in model.named_children():layers[name] = moduleif name in return_layers:del return_layers[name]if not return_layers:breaksuper(IntermediateLayerGetter, self).__init__(layers)self.return_layers = orig_return_layersdef forward(self, x: Tensor) -> Dict[str, Tensor]:out = OrderedDict()for name, module in self.items():x = module(x)if name in self.return_layers:out_name = self.return_layers[name]out[out_name] = xreturn outclass DeepLabV3(nn.Module):"""Implements DeepLabV3 model from`"Rethinking Atrous Convolution for Semantic Image Segmentation"<https://arxiv.org/abs/1706.05587>`_.Args:backbone (nn.Module): the network used to compute the features for the model.The backbone should return an OrderedDict[Tensor], with the key being"out" for the last feature map used, and "aux" if an auxiliary classifieris used.classifier (nn.Module): module that takes the "out" element returned fromthe backbone and returns a dense prediction.aux_classifier (nn.Module, optional): auxiliary classifier used during training"""__constants__ = ['aux_classifier']def __init__(self, backbone, classifier, aux_classifier=None):super(DeepLabV3, self).__init__()self.backbone = backboneself.classifier = classifierself.aux_classifier = aux_classifierdef forward(self, x: Tensor) -> Dict[str, Tensor]:input_shape = x.shape[-2:]# contract: features is a dict of tensorsfeatures = self.backbone(x)result = OrderedDict()x = features["out"]x = self.classifier(x)# 使用双线性插值还原回原图尺度x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=False)result["out"] = xif self.aux_classifier is not None:x = features["aux"]x = self.aux_classifier(x)# 使用双线性插值还原回原图尺度x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=False)result["aux"] = xreturn resultclass FCNHead(nn.Sequential):def __init__(self, in_channels, channels):inter_channels = in_channels // 4  # 两个//表示地板除,即先做除法,然后向下取整super(FCNHead, self).__init__(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),nn.BatchNorm2d(inter_channels),nn.ReLU(),nn.Dropout(0.1),nn.Conv2d(inter_channels, channels, 1))class ASPPConv(nn.Sequential):def __init__(self, in_channels: int, out_channels: int, dilation: int) -> None:super(ASPPConv, self).__init__(nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU())class ASPPPooling(nn.Sequential):def __init__(self, in_channels: int, out_channels: int) -> None:super(ASPPPooling, self).__init__(nn.AdaptiveAvgPool2d(1),nn.Conv2d(in_channels, out_channels, 1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU())def forward(self, x: torch.Tensor) -> torch.Tensor:size = x.shape[-2:]for mod in self:x = mod(x)return F.interpolate(x, size=size, mode='bilinear', align_corners=False)class ASPP(nn.Module):def __init__(self, in_channels: int, atrous_rates: List[int], out_channels: int = 256) -> None:super(ASPP, self).__init__()modules = [nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU())]rates = tuple(atrous_rates)for rate in rates:modules.append(ASPPConv(in_channels, out_channels, rate))modules.append(ASPPPooling(in_channels, out_channels))self.convs = nn.ModuleList(modules)self.project = nn.Sequential(nn.Conv2d(len(self.convs) * out_channels, out_channels, 1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Dropout(0.5))def forward(self, x: torch.Tensor) -> torch.Tensor:_res = []for conv in self.convs:_res.append(conv(x))res = torch.cat(_res, dim=1)return self.project(res)class DeepLabHead(nn.Sequential):def __init__(self, in_channels: int, num_classes: int) -> None:super(DeepLabHead, self).__init__(ASPP(in_channels, [12, 24, 36]),nn.Conv2d(256, 256, 3, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(),nn.Conv2d(256, num_classes, 1))def deeplabv3_resnet50(aux, num_classes=21, pretrain_backbone=False):# 'resnet50_imagenet': 'https://download.pytorch.org/models/resnet50-0676ba61.pth'# 'deeplabv3_resnet50_coco': 'https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth'backbone = resnet50(replace_stride_with_dilation=[False, True, True])if pretrain_backbone:# 载入resnet50 backbone预训练权重backbone.load_state_dict(torch.load("resnet50.pth", map_location='cpu'))out_inplanes = 2048aux_inplanes = 1024return_layers = {'layer4': 'out'}if aux:return_layers['layer3'] = 'aux'backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)aux_classifier = None# why using aux: https://github.com/pytorch/vision/issues/4292if aux:aux_classifier = FCNHead(aux_inplanes, num_classes)classifier = DeepLabHead(out_inplanes, num_classes)model = DeepLabV3(backbone, classifier, aux_classifier)return modeldef deeplabv3_resnet101(aux, num_classes=21, pretrain_backbone=False):# 'resnet101_imagenet': 'https://download.pytorch.org/models/resnet101-63fe2227.pth'# 'deeplabv3_resnet101_coco': 'https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth'backbone = resnet101(replace_stride_with_dilation=[False, True, True])if pretrain_backbone:# 载入resnet101 backbone预训练权重backbone.load_state_dict(torch.load("resnet101.pth", map_location='cpu'))out_inplanes = 2048aux_inplanes = 1024return_layers = {'layer4': 'out'}if aux:return_layers['layer3'] = 'aux'backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)aux_classifier = None# why using aux: https://github.com/pytorch/vision/issues/4292if aux:aux_classifier = FCNHead(aux_inplanes, num_classes)classifier = DeepLabHead(out_inplanes, num_classes)model = DeepLabV3(backbone, classifier, aux_classifier)return modeldef deeplabv3_mobilenetv3_large(aux, num_classes=21, pretrain_backbone=False):# 'mobilenetv3_large_imagenet': 'https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth'# 'depv3_mobilenetv3_large_coco': "https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth"backbone = mobilenet_v3_large(dilated=True)if pretrain_backbone:# 载入mobilenetv3 large backbone预训练权重backbone.load_state_dict(torch.load("mobilenet_v3_large.pth", map_location='cpu'))backbone = backbone.features# Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.# The first and last blocks are always included because they are the C0 (conv1) and Cn.stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "is_strided", False)] + [len(backbone) - 1]out_pos = stage_indices[-1]  # use C5 which has output_stride = 16out_inplanes = backbone[out_pos].out_channelsaux_pos = stage_indices[-4]  # use C2 here which has output_stride = 8aux_inplanes = backbone[aux_pos].out_channelsreturn_layers = {str(out_pos): "out"}if aux:return_layers[str(aux_pos)] = "aux"backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)aux_classifier = None# why using aux: https://github.com/pytorch/vision/issues/4292if aux:aux_classifier = FCNHead(aux_inplanes, num_classes)classifier = DeepLabHead(out_inplanes, num_classes)model = DeepLabV3(backbone, classifier, aux_classifier)return model----------------------------------------------------------------------------------分割线-------------------------------------------from typing import Callable, List, Optionalimport torch
from torch import nn, Tensor
from torch.nn import functional as F
from functools import partialdef _make_divisible(ch, divisor=8, min_ch=None):  # 为了使每一层的通道数都可以被8整除"""This function is taken from the original tf repo.It ensures that all layers have a channel number that is divisible by 8It can be seen here:https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py"""if min_ch is None:min_ch = divisornew_ch = max(min_ch, int(ch + divisor / 2) // divisor * divisor)# Make sure that round down does not go down by more than 10%.if new_ch < 0.9 * ch:new_ch += divisorreturn new_chclass ConvBNActivation(nn.Sequential):def __init__(self,in_planes: int,out_planes: int,kernel_size: int = 3,stride: int = 1,groups: int = 1,norm_layer: Optional[Callable[..., nn.Module]] = None,activation_layer: Optional[Callable[..., nn.Module]] = None,dilation: int = 1):padding = (kernel_size - 1) // 2 * dilationif norm_layer is None:norm_layer = nn.BatchNorm2dif activation_layer is None:activation_layer = nn.ReLU6super(ConvBNActivation, self).__init__(nn.Conv2d(in_channels=in_planes,out_channels=out_planes,kernel_size=kernel_size,stride=stride,dilation=dilation,padding=padding,groups=groups,bias=False),norm_layer(out_planes),activation_layer(inplace=True))self.out_channels = out_planesclass SqueezeExcitation(nn.Module):def __init__(self, input_c: int, squeeze_factor: int = 4):super(SqueezeExcitation, self).__init__()squeeze_c = _make_divisible(input_c // squeeze_factor, 8)self.fc1 = nn.Conv2d(input_c, squeeze_c, 1)self.fc2 = nn.Conv2d(squeeze_c, input_c, 1)def forward(self, x: Tensor) -> Tensor:scale = F.adaptive_avg_pool2d(x, output_size=(1, 1))scale = self.fc1(scale)scale = F.relu(scale, inplace=True)scale = self.fc2(scale)scale = F.hardsigmoid(scale, inplace=True)return scale * xclass InvertedResidualConfig:def __init__(self,input_c: int,kernel: int,expanded_c: int,out_c: int,use_se: bool,activation: str,stride: int,dilation: int,width_multi: float):self.input_c = self.adjust_channels(input_c, width_multi)self.kernel = kernelself.expanded_c = self.adjust_channels(expanded_c, width_multi)self.out_c = self.adjust_channels(out_c, width_multi)self.use_se = use_seself.use_hs = activation == "HS"  # whether using h-swish activationself.stride = strideself.dilation = dilation@staticmethoddef adjust_channels(channels: int, width_multi: float):return _make_divisible(channels * width_multi, 8)class InvertedResidual(nn.Module):def __init__(self,cnf: InvertedResidualConfig,norm_layer: Callable[..., nn.Module]):super(InvertedResidual, self).__init__()if cnf.stride not in [1, 2]:raise ValueError("illegal stride value.")self.use_res_connect = (cnf.stride == 1 and cnf.input_c == cnf.out_c)layers: List[nn.Module] = []activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU# expandif cnf.expanded_c != cnf.input_c:layers.append(ConvBNActivation(cnf.input_c,cnf.expanded_c,kernel_size=1,norm_layer=norm_layer,activation_layer=activation_layer))# depthwisestride = 1 if cnf.dilation > 1 else cnf.stridelayers.append(ConvBNActivation(cnf.expanded_c,cnf.expanded_c,kernel_size=cnf.kernel,stride=stride,dilation=cnf.dilation,groups=cnf.expanded_c,norm_layer=norm_layer,activation_layer=activation_layer))if cnf.use_se:layers.append(SqueezeExcitation(cnf.expanded_c))# projectlayers.append(ConvBNActivation(cnf.expanded_c,cnf.out_c,kernel_size=1,norm_layer=norm_layer,activation_layer=nn.Identity))self.block = nn.Sequential(*layers)self.out_channels = cnf.out_cself.is_strided = cnf.stride > 1def forward(self, x: Tensor) -> Tensor:result = self.block(x)if self.use_res_connect:result += xreturn resultclass MobileNetV3(nn.Module):def __init__(self,inverted_residual_setting: List[InvertedResidualConfig],last_channel: int,num_classes: int = 1000,block: Optional[Callable[..., nn.Module]] = None,norm_layer: Optional[Callable[..., nn.Module]] = None):super(MobileNetV3, self).__init__()if not inverted_residual_setting:raise ValueError("The inverted_residual_setting should not be empty.")elif not (isinstance(inverted_residual_setting, List) andall([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])):raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")if block is None:block = InvertedResidualif norm_layer is None:norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)layers: List[nn.Module] = []# building first layerfirstconv_output_c = inverted_residual_setting[0].input_clayers.append(ConvBNActivation(3,firstconv_output_c,kernel_size=3,stride=2,norm_layer=norm_layer,activation_layer=nn.Hardswish))# building inverted residual blocksfor cnf in inverted_residual_setting:layers.append(block(cnf, norm_layer))# building last several layerslastconv_input_c = inverted_residual_setting[-1].out_clastconv_output_c = 6 * lastconv_input_clayers.append(ConvBNActivation(lastconv_input_c,lastconv_output_c,kernel_size=1,norm_layer=norm_layer,activation_layer=nn.Hardswish))self.features = nn.Sequential(*layers)self.avgpool = nn.AdaptiveAvgPool2d(1)self.classifier = nn.Sequential(nn.Linear(lastconv_output_c, last_channel),nn.Hardswish(inplace=True),nn.Dropout(p=0.2, inplace=True),nn.Linear(last_channel, num_classes))# initial weightsfor m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out")if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):nn.init.ones_(m.weight)nn.init.zeros_(m.bias)elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.zeros_(m.bias)def _forward_impl(self, x: Tensor) -> Tensor:x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return xdef forward(self, x: Tensor) -> Tensor:return self._forward_impl(x)def mobilenet_v3_large(num_classes: int = 1000,reduced_tail: bool = False,dilated: bool = False) -> MobileNetV3:"""Constructs a large MobileNetV3 architecture from"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>.weights_link:https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pthArgs:num_classes (int): number of classesreduced_tail (bool): If True, reduces the channel counts of all feature layersbetween C4 and C5 by 2. It is used to reduce the channel redundancy in thebackbone for Detection and Segmentation.dilated: whether using dilated conv"""width_multi = 1.0bneck_conf = partial(InvertedResidualConfig, width_multi=width_multi)adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_multi=width_multi)reduce_divider = 2 if reduced_tail else 1dilation = 2 if dilated else 1inverted_residual_setting = [# input_c, kernel, expanded_c, out_c, use_se, activation, stride, dilationbneck_conf(16, 3, 16, 16, False, "RE", 1, 1),bneck_conf(16, 3, 64, 24, False, "RE", 2, 1),  # C1bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),bneck_conf(24, 5, 72, 40, True, "RE", 2, 1),  # C2bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),bneck_conf(40, 3, 240, 80, False, "HS", 2, 1),  # C3bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation),  # C4bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),]last_channel = adjust_channels(1280 // reduce_divider)  # C5return MobileNetV3(inverted_residual_setting=inverted_residual_setting,last_channel=last_channel,num_classes=num_classes)def mobilenet_v3_small(num_classes: int = 1000,reduced_tail: bool = False,dilated: bool = False) -> MobileNetV3:"""Constructs a large MobileNetV3 architecture from"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>.weights_link:https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pthArgs:num_classes (int): number of classesreduced_tail (bool): If True, reduces the channel counts of all feature layersbetween C4 and C5 by 2. It is used to reduce the channel redundancy in thebackbone for Detection and Segmentation.dilated: whether using dilated conv"""width_multi = 1.0bneck_conf = partial(InvertedResidualConfig, width_multi=width_multi)adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_multi=width_multi)reduce_divider = 2 if reduced_tail else 1dilation = 2 if dilated else 1inverted_residual_setting = [# input_c, kernel, expanded_c, out_c, use_se, activation, stride, dilationbneck_conf(16, 3, 16, 16, True, "RE", 2, 1),  # C1bneck_conf(16, 3, 72, 24, False, "RE", 2, 1),  # C2bneck_conf(24, 3, 88, 24, False, "RE", 1, 1),bneck_conf(24, 5, 96, 40, True, "HS", 2, 1),  # C3bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),bneck_conf(40, 5, 120, 48, True, "HS", 1, 1),bneck_conf(48, 5, 144, 48, True, "HS", 1, 1),bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation),  # C4bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation)]last_channel = adjust_channels(1024 // reduce_divider)  # C5return MobileNetV3(inverted_residual_setting=inverted_residual_setting,last_channel=last_channel,num_classes=num_classes)

在上述代码中,也将之前FCNmodel中没有的mobilenet作为backbone的模型代码也加了上来。

参考链接:

288, 96 // reduce_divider, True, “HS”, 2, dilation), # C4
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, “HS”, 1, dilation),
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, “HS”, 1, dilation)
]
last_channel = adjust_channels(1024 // reduce_divider) # C5

return MobileNetV3(inverted_residual_setting=inverted_residual_setting,last_channel=last_channel,num_classes=num_classes)

在上述代码中,也将之前FCNmodel中没有的mobilenet作为backbone的模型代码也加了上来。参考链接:[deep-learning-for-image-processing/pytorch_segmentation/fcn/src/fcn_model.py at bf4384bfc14e295fdbdc967d6b5093cce0bead17 · WZMIAOMIAO/deep-learning-for-image-processing (github.com)](https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/blob/bf4384bfc14e295fdbdc967d6b5093cce0bead17/pytorch_segmentation/fcn/src/fcn_model.py)
http://www.yayakq.cn/news/979629/

相关文章:

  • 网站建设人员考核谷歌搜索入口手机版
  • 洛阳网站建设报价传奇背景图网站怎么做
  • 网站开发需求分析用的图展厅展馆策划设计
  • 局域网网站建设多少钱房屋设计手机绘图软件
  • 旅游公司的网站怎么做免费网站建设哪个好 - 百度
  • 世代网络网站建设设计电商运营一般要学多久
  • 个人能建网站吗网页版微信无法登录
  • 金融网站建设方法抚州哪里有做企业网站的公司
  • 建设响应式网站怎样提升网站关键词
  • 网站设计是用什么做的创建qq网站
  • 正规的网站制作电话ui毕业设计代做网站
  • 哪个网站可以做前端项目网页设计站点建设实验报告
  • 建一个网站需要多少钱?现在网络公司做网站是用cms还是新版编程_
  • 网站怎么引入微信支付建设学校网站需要具备
  • 网站竞价推广哪个好如何搭建手机网站源码
  • 如何建设国际网站射阳做网站的公司在哪
  • 嘉兴做网站优化的公司手机端网站开发要注意什么
  • 洛阳网站建设首选洛阳铭信科技wordpress 评论500
  • 软件工程师需要什么学历表单网站怎么做seo
  • wap 网站 手机一键做网站
  • 阿里云 外贸网站wordpress制作公司
  • 做的好的ppt下载网站有哪些免流网站开发
  • 网站代码在哪里写权威发布的含义
  • 建站类平台排行榜wordpress 预订 插件
  • 上海网站建设多少钱黄山工程建设信息网站
  • 如何建设影视网站龙华专业网站建设
  • 欧美风企业网站 英文模板wordpress有趣的插件
  • 怎样做网站系统电脑设计长春什么公司比较好
  • 个人网站推荐买目录做网站
  • 如何用asp做视频网站网页搜题工具