当前位置: 首页 > news >正文

网站转备案公司网站推广计划书

网站转备案,公司网站推广计划书,高端定制网站建设制作,三亚做网站的公司1. 模型转换 ONNX Runtime 是一个开源的高性能推理引擎,用于部署和运行机器学习模型,其设计的目标是优化执行open neural network exchange (onnx)格式定义各模型,onnx是一种用于表示机器学习模型的开放标准。ONNX Ru…

1. 模型转换

ONNX Runtime 是一个开源的高性能推理引擎,用于部署和运行机器学习模型,其设计的目标是优化执行open neural network exchange (onnx)格式定义各模型,onnx是一种用于表示机器学习模型的开放标准。ONNX Runtime提供了几个关键功能和优势:

a. 跨平台兼容性:ONNX Runtime 旨在与各种硬件与操作系统平台兼容,主要包括Windows、Linux及各种加速器,如CPU、GPU和FPGA,使得能够轻松在不同环境中部署和运行机器学习模型。

b. 高性能:ONNX Runtime 经过性能优化,能够提供高效的模型计算,而且针对不同的平台提供了对应的优化模式。

c. 多框架支持:ONNX Runtime 可以与使用不同的机器学习框架创建的模型一起使用,包括Pytorch、Tensorflow等。

d. 模型转换:ONNX Runtime 可以将所支持的框架模型转换为onnx格式,从而更容易在各种场景中部署。

e. 多语言支持:ONNX Runtime 可用多种编程语言,包括C++、C#、Python等,使其能够适用于不同语言的开发场景。

f. 自定义运算符:ONNX Runtime 支持自定义运算符,允许开发人员扩展其功能以支持特定操作或硬件加速。

ONNX Runtime广泛用于各种机器学习应用的生产部署,包括计算机视觉、自然语言处理等。它由ONNX社区积极维护,并持续接受更新和改进。

2. pt模型与onnx模型区别

pt模型和onnx模型均为常用的表示机器学习模型的文件格式,主要区别体现在:

a. 文件格式:

pt模型:Pytorch框架的权重文件格式,通常保存为.pt或.pth扩展名保存,包含了模型的权重参数及模型结构的定义。

onnx模型:ONNX格式的模型文件,通常以.onnx扩展名保存,onnx文件是一种中性表示格式,独立于任何特定的深度学习框架,用于跨不同框架之间的模型转换和部署。

b. 框架依赖:

pt模型:依赖于Pytorch框架,在加载和运行时需要使用Pytorch库,限制了此类模型在不同框架中的直接使用。

onnx模型:ONNX模型独立于深度学习框架,可以在支持ONNX的不同框架中加载和运行,如Tensorflow、Caffe2及ONNX Runtime等。

c. 跨平台兼容性:

pt模型:需要在不同平台上进行Pytorch的兼容性配置,需要额外的工作和依赖处理。

onnx模型:ONNX模型的独立性使其更容易在不同平台和硬件上部署,无需担心框架依赖性问题。

3. yolov8 pt模型转换为onnx

要在不同框架或平台中部署训练的pt模型,需要利用ONNX转换工具将pt模型转换为ONNX格式。

from ultralytics import YOLO% load model
model = YOLO('yolov8m.pt')% expert model
success = model.expert(format="onnx")

4. 构建推理模型

a. 环境配置

onnx模型推理只依赖于onnxruntime库,图像处理依赖opencv,需要安装此两个库。

pip3 install onnxruntime
pip3 install opencv-python
pip3 install numpy
pip3 install gradio

b. 部署代码

utils.py

import numpy as np
import cv2class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard','cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase','scissors', 'teddy bear', 'hair drier', 'toothbrush']# Create a list of colors for each class where each color is a tuple of 3 integer values
rng = np.random.default_rng(3)
colors = rng.uniform(0, 255, size=(len(class_names), 3))def nms(boxes, scores, iou_threshold):# Sort by scoresorted_indices = np.argsort(scores)[::-1]keep_boxes = []while sorted_indices.size > 0:# Pick the last boxbox_id = sorted_indices[0]keep_boxes.append(box_id)# Compute IoU of the picked box with the restious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])# Remove boxes with IoU over the thresholdkeep_indices = np.where(ious < iou_threshold)[0]# print(keep_indices.shape, sorted_indices.shape)sorted_indices = sorted_indices[keep_indices + 1]return keep_boxesdef multiclass_nms(boxes, scores, class_ids, iou_threshold):unique_class_ids = np.unique(class_ids)keep_boxes = []for class_id in unique_class_ids:class_indices = np.where(class_ids == class_id)[0]class_boxes = boxes[class_indices,:]class_scores = scores[class_indices]class_keep_boxes = nms(class_boxes, class_scores, iou_threshold)keep_boxes.extend(class_indices[class_keep_boxes])return keep_boxesdef compute_iou(box, boxes):# Compute xmin, ymin, xmax, ymax for both boxesxmin = np.maximum(box[0], boxes[:, 0])ymin = np.maximum(box[1], boxes[:, 1])xmax = np.minimum(box[2], boxes[:, 2])ymax = np.minimum(box[3], boxes[:, 3])# Compute intersection areaintersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)# Compute union areabox_area = (box[2] - box[0]) * (box[3] - box[1])boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])union_area = box_area + boxes_area - intersection_area# Compute IoUiou = intersection_area / union_areareturn ioudef xywh2xyxy(x):# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)y = np.copy(x)y[..., 0] = x[..., 0] - x[..., 2] / 2y[..., 1] = x[..., 1] - x[..., 3] / 2y[..., 2] = x[..., 0] + x[..., 2] / 2y[..., 3] = x[..., 1] + x[..., 3] / 2return ydef draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3):det_img = image.copy()img_height, img_width = image.shape[:2]font_size = min([img_height, img_width]) * 0.0006text_thickness = int(min([img_height, img_width]) * 0.001)det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)# Draw bounding boxes and labels of detectionsfor class_id, box, score in zip(class_ids, boxes, scores):color = colors[class_id]draw_box(det_img, box, color)label = class_names[class_id]caption = f'{label} {int(score * 100)}%'draw_text(det_img, caption, box, color, font_size, text_thickness)return det_imgdef detections_dog(image, boxes, scores, class_ids, mask_alpha=0.3):det_img = image.copy()img_height, img_width = image.shape[:2]font_size = min([img_height, img_width]) * 0.0006text_thickness = int(min([img_height, img_width]) * 0.001)# det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)# Draw bounding boxes and labels of detectionsfor class_id, box, score in zip(class_ids, boxes, scores):color = colors[class_id]draw_box(det_img, box, color)label = class_names[class_id]caption = f'{label} {int(score * 100)}%'draw_text(det_img, caption, box, color, font_size, text_thickness)return det_imgdef draw_box( image: np.ndarray, box: np.ndarray, color: tuple[int, int, int] = (0, 0, 255),thickness: int = 2) -> np.ndarray:x1, y1, x2, y2 = box.astype(int)return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)def draw_text(image: np.ndarray, text: str, box: np.ndarray, color: tuple[int, int, int] = (0, 0, 255),font_size: float = 0.001, text_thickness: int = 2) -> np.ndarray:x1, y1, x2, y2 = box.astype(int)(tw, th), _ = cv2.getTextSize(text=text, fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=font_size, thickness=text_thickness)th = int(th * 1.2)cv2.rectangle(image, (x1, y1),(x1 + tw, y1 - th), color, -1)return cv2.putText(image, text, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 255, 255), text_thickness, cv2.LINE_AA)def draw_masks(image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3) -> np.ndarray:mask_img = image.copy()# Draw bounding boxes and labels of detectionsfor box, class_id in zip(boxes, classes):color = colors[class_id]x1, y1, x2, y2 = box.astype(int)# Draw fill rectangle in mask imagecv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)

YOLODet.py

import time
import cv2
import numpy as np
import onnxruntimefrom detection.utils import xyw2xyxy, draw_detections, multiclass_nms, detections_dogclass YOLODet:def __init__(self, path, conf_thresh=0.7, iou_thresh=0.5):self.conf_threshold = conf_threshself.iou_threshold = iou_thresh# Initialize modelself.initialize_model(path)def __call__(self, image):return self.detect_objects(image)def initialize_model(self, path):self.session = onnxruntime.InferenceSession(path, providers=onnxruntime.get_available_providers())# Get model infoself.get_input_details()self.get_output_details()def detect_objects(self, image):input_tensor = self.prepare_input(image)# perform inference on the imageoutputs = self.inference(input_tensor)self.boxes, self.scores, self.class_ids = self.process_output(outputs)return self.boxes. self.scores, self.class_idsdef prepare_input(self, image):self.img_height, self.img_width = img.shape[:2]input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# resize input imageinput_img = cv2.resize(input_img, (self.input_width, self.input_height))# scale input pixel values to 0 to 1input_img = input_img / 255.0input_img = input_img.transpose(2, 0, 1)input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)return input_tensordef inference(self, input_tensor):start = time.perf_counter()outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})# printf(f"inference time: {(time.perf_counter() - start)*1000:.2f} ms")return outputsdef process_output(self, output):predictions = np.squeeze(output[0]).T# filter out object confidence scores below thresholdscores = np.max(predictions[:,4:], axis=1)predictions = predictions[scores > self.conf_threshold, :]scores = scores[scores > self.conf_threshold]if len(scores) == 0:return [], [], []# get the class with the highest confidenceclass_ids = np.argmax(predictions[:,4:], axis=1)# get bounding boxes for each objectboxes = self.extract_boxes(predictions)# apply non-maxima suppression to suppress weak, overlapping bounding boxes# indices = nms(boxes, scores, class_ids, self.iou_threshold)return boxes[indices], scores[indices], class_ids[indices]def extract_boxes(self, predictions):# extract boxes from predictionsboxes = predictions[:,:4]# scale boxes to original image dimensionsboxes = self.rescale_boxes(boxes)# convert boxes to xyxy fromatboxes = xyw2xyxy(boxes)return boxesdef rescale_boxes(self, boxes):# rescale boxes to original image dimensionsinput_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])boxes = np.divide(boxes, input_shape, dtype=np.float32)boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])return boxesdef draw_detection(self, image, draw_scores=True, mask_alpha=0.4):return detection_dog(image, self.boxes, self.scores, self.class_ids, mask_alpha)def get_input_details(self):model_inputs = self.session.get_inputs()self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]self.input_shape = model_inputs[0].shapeself.input_height = self.input_shape[2]self.input_width = self.input_shape[3]def get_output_details(self):model_outputs = self.session.get_outputs()self.output_names = [model_output[i].name for i in range(len(model_outputs))]

5. 测试模型

图像测试

import cv2
import numpy as np
from detection import YOLODet
import gradio as grmodel = 'yolov8m.onnx'
yolo_det = YOLODet(model, conf_thresh=0.5, iou_thresh=0.3)def det_img(cv_src):yolo_det(cv_src)cv_dst = yolo_det.draw_detections(cv_src)return cv_dstif __name__ == '__main__':input = gr.Image()output = gr.Image()demo = gr.Interface(fn=det_img, inputs=input, outputs=output)demo.launch()

视频推理

def detectio_video(input_path, model_path, output_path):cap = cv2.VideoCapture(input_path)fps = int(cap.get(5))t = int(1000 / fps)videoWriter = Nonedet = YOLODet(model_path, conf_thresh=0.3, iou_thresh=0.5)while True:# try_, img = cap.read()if img is None:breakdet(img)cv_dst = det.draw_detections(img)if videoWriter is None:fourcc = cv2.VideoWriter_fourcc('m','p','4','v')videoWriter = cv2.VideoWriter(output_path, fourcc, fps, (cv_dst.shape[1], cv_dst.shape[0]))cv2.imshow("detection", cv_dst)cv2.waitKey(t)if cv2.getWindowProperty("detection", cv2.WND_PROP_AUTOSIZE) < 1:breakcap.release()videoWriter.release()cv2.destroyAllWindows()

http://www.yayakq.cn/news/530456/

相关文章:

  • 新网站怎么做论坛推广百度免费网站如何建设
  • 网站建设财务处理网站建设太金手指六六六
  • 百度推广怎么做的网站吗广州珈瑶公司是哪一年注册的
  • 做网站设计挣钱吗怎么修改网页源代码
  • 北辰正方建设集团网站googleplay官方下载
  • 邯郸建设网站公司中英文的网站是怎么做的
  • 不规则网站模板怎么注册英文网站域名
  • 余姚网站建设notepad做网站技巧
  • 有哪些网站可以做店面设计软件学网站开发需要报培训机构吗
  • 沧州做网站推广网站百度排名查询
  • 珠海建设工程备案网站河南省建设工程造价信息网站
  • 六安网站推广免费制作地图app
  • 网站建设运营知乎wordpress 虾米页面
  • 临沂吧网站建设做金融服务网站赚钱
  • seo网站服务公司网站开发工具有
  • 怡清源在慧聪网网站建设情况最好看的免费观看全集电视剧
  • wordpress 多站点 子目录seo技术团队
  • 网站建设业务员培训网页设计与网站建设简答题
  • 平面设计图网站网站建设模版
  • 自己建设网站的利弊seo推广经验
  • 怎么找到php网站的首页面html模板出售网站源码
  • 企业门户网站建设案例flash网站推荐
  • 福州专业做网站的公司广告设计就业方向
  • 假发网站建设八戒八戒在线观看免费完整版
  • 工信部网站备案中山做百度网站的公司吗
  • 首页有动效的网站免费网站可以做淘宝客吗
  • 珠海网站制作平台在谷歌上做英文网站
  • 做网站维护的是什么公司优酷专门给马天宇做的网站
  • 毕业设计做网站要求影响网站打开速度
  • wordpress仿站步骤织梦如何做网站