当前位置: 首页 > news >正文

南宁网站建设多少钱wordpress支付宝流程

南宁网站建设多少钱,wordpress支付宝流程,沈阳做网站客户多吗,劳务派遣好还是外包好在实际应用的时候,我们的样本不会是完全干净的,即存在噪声样本。那使用存在噪声的样本时,我们如何更有效的进行模型学习呢?Label Dependent Nose样本选择(Sample Selection)第一种很直接的想法,…

在实际应用的时候,我们的样本不会是完全干净的,即存在噪声样本。那使用存在噪声的样本时,我们如何更有效的进行模型学习呢?

Label Dependent Nose

样本选择(Sample Selection)

  1. 第一种很直接的想法,就是我们在样本集里,把那些‘噪声’找出来,然后直接过滤掉。但这里面的难点在于怎么找出哪些噪声。

  1. 人工经验:比如大学生一般是18岁-30之间,如果小于18岁,比如只有15岁就大概率不是。

  1. 规则:比如先走一遍已存在的比较靠谱的模型,将p比较低的直接过滤;

  1. 另一种想法,就是在模型训练的时候,进行样本选择。即对于每个batch,只选择clean样本的loss进行模型的更新。其中比较主流的方法时co-train系列。

  1. Decoupling(《Decoupling “when to update” from “how toupdate”》)

核心思路:分别独立训练2个模型,对于每个batch,2个模型分别预测。对于预测结果不一致的数据,才会被选择用来更新模型的参数,又被称为「update by disagreement」

  1. Co-teaching(《Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels》)

核心思路:对于2个模型f和g。对于每个batch,选择模型f中loss比较小的数据,计算这些数据在模型g上的损失并更新模型g的参数。同时选择模型g中loss比较小的数据,计算它们在f上的损失并更新模型f的参数。每个batch里选择多少个数据,由R(T)来控制。

  1. Co-teaching+(ICML2019的《How does Disagreement Help Generalization against Label Corruption?》)

核心思路: 结合了Co-teach和decoupling的思路

正则化(Robust Regularization)

通过正则化的方法,防止模型过拟合岛噪声样本上。比如Dropout、BN等方法。

  1. 显式正则:比如Dropout、BN、权重衰减等。这里介绍一种bilevel learning

bilevel learning:使用一个干净的验证集,应用双层优化的方式来约束过拟合。通过调整权重,最小化在验证集上的错误。在每个mini-batch上,计算训练样本和验证集样本之间梯度的一致性,一致性高的训练样本对应的权重增大。

  1. 隐式正则:在不降低模型表示能力的前提下提升了泛化性能

adversarial training: 对抗训练,鼓励网络正确分类原始输入和扰动的输入;

label smoothing:标签平滑,防止过度自信,平滑分类边界,平滑标签是原始标签和其他可能标签的加权组合;

mixup: 数据线性插值,标签也线性插值

结构设计(Robust Architecture)

  1. 噪声自适应层(noise adaptation layer)

专门用噪声过渡矩阵来建模噪声转换,测试的去掉这一层。只针对实例无关的噪声。

Loss设计(Robust Loss)

  1. 首先我们介绍下对称损失(Symmetric Loss),因为Symmetric Loss是理论可证明噪声鲁棒的。

我们这里考虑2分类任务。对于训练样本x,标签为y(y ∈ {0, 1}),fθ(x)为模型输出(θ为待优化的参数),损失函数为l。

a. 没有标签噪声的情况下,待优化的目标为l[fθ(x), y] (1);

b. 在考虑有噪声的情况下,x有概率ρ被误标为1-y,那么实际上的优化目标是(1−ρ)⋅l[fθ(x), y] + ρ⋅l[fθ(x), 1−y] (2)。

c. 对于目标函数(2),如果无论有无噪声,该优化问题都会得到同样的解。这时候损失函数L就是噪声鲁棒的。

d. 目标函数(2)可以转换为如下,整理后的第一项是目标函数(1)的一个固定倍数。而第二项是当样本标签等概率取遍所有可能值时,所产生的损失值。

e. 如果满足如下结果时(其中C是常数),那么l就是Symmetric Loss,即优化目标函数(2)和优化目标函数(1)是等价的。

  1. MAE

考虑2分类,l[fθ(x), y] + l[fθ(x), 1-y] = |1-fθ(x)| + |0-fθ(x)| = 1,所以MAE是对称损失。但MAE的性能比较差,跟CCE(categorical cross entropy)相比,训练的收敛时间更长。

  1. GCE(generalized cross entropy)

  1. CE/CCE不是对称损失。l[fθ(x), y] + l[fθ(x), 1-y]=C,要求各个损失项非负,且其和为定值,那么各个损失项必然是有界的。但在当fθ(x)接近于0或者1时,logfθ(x)或−log(1−fθ(x))是无界的。

  1. GCE可以兼顾MAE的鲁棒性和CE的性能。−log(fθ(x))项,替换成一个指数项

其中幂次q为一个超参数,取值范围为(0, 1] 。当q = 1时,该指数项就蜕变为MAE的形式;当q→0时,由洛必达法则,该指数项将蜕变为CE的形式。

  1. SCE(symmetric cross entropy):在CCE上结合了一个noise tolerance term。

  1. Focal Loss & GHM Loss

GHM可以认为是Focal Loss的一种优化。如下图所示,梯度模长在接近0时样本量最多,这部分是简单样本。随着模长增大,样本量迅速下降,在U字底部的部分可以认为是困难样本。在模长接近1时,数量又变多,这部分可以认为是极困难样本或者噪声样本。

最终根据这种分布设计梯度密度,来调整样本的权重。

  1. Loss Adjustment

  1. Loss Correction:和噪声自适应层类似,损失校正通过给模型输出结果乘上一个估计的标签转移矩阵来修改loss,不同之处在于,噪声转移矩阵的学习是和模型的学习解耦的。包括backward correction、forward correction等。

  1. Loss Reweighting:计算loss时给假样本更小的权重,给真样本更高的权重。这类方法手动设计权重函数和超参。

  1. Label Refurbishment:将网络的输出标签和噪声标签组合作为翻新后的标签:(a是噪声标签的置信度)

  1. Meta Learning

Instance Dependent Noise

实际上在真实世界的数据集中,存在更多的是instance-dependent (feature-dependent) label noise,即特征相关的噪音标签。

  1. SEAL(self-evolution average label)

  1. CORES(COnfidence REgularized Sample Sieve)

参考

Learning from Noisy Labels with Deep NeuralNetworks: A Survey

http://www.yayakq.cn/news/607634/

相关文章:

  • 思南县住房和城乡建设局网站微信表情开放平台官网
  • 婚庆公司网站建设响应式模板网站建设
  • 大连网站建设网站wordpress 访客文章
  • 营销型网站具备的二大能力义乌网站建设zisou8
  • 做公众号还是网站基于liferay portal的乡镇企业门户网站建设研究
  • 单位网站开发海洋网站建设公司
  • 购物网站介绍济南网站建设老威
  • 翻书效果网站站长工具seo推广秒收录
  • 虎扑的网站是用什么技术做的做网站导航按钮怎么做
  • 网站开发建立站点道县找人做网站
  • 商城网站建设用乐云seo系统做网站优化
  • 南昌好的做网站的公司中国最新的军事新闻
  • 常用网站图标网页设计应该学什么专业
  • 网站登录人太多进不去怎么办昆明网站开发公司电话
  • 咸阳做网站公司网页传奇单职业
  • 个人建站的app哪里有卖gov域名网站有哪些
  • 做电商讲师课程的网站建设网站优化
  • 网站建设有什么需求阿里云 企业网站选哪种
  • 个人 网站建设免费制作简历
  • 彩票网站模板源码长沙网络推广平台
  • 建设银行手机登录网站海外服务器购买
  • 云梦县建设安全网站高端品牌网站建设特点
  • 正规设计兼职网站有哪些网站定制开发建设
  • 单页网站欣赏黑色网站源码
  • html5 wap网站模板动画网站建设的实验步骤
  • 南开大学 网站开发技术 刘冲盗版网站怎么做的
  • 东莞市企业网站制作企业淘宝客网站女装模板下载
  • html 网站门头设计
  • 怎样做网站建设方案吴江区建设用地申报网站
  • 揭阳网站制作套餐小新pro更改网站设置