当前位置: 首页 > news >正文

苏州 规划建设局网站如何提升网站的收录量

苏州 规划建设局网站,如何提升网站的收录量,如何做网站推广自己产品,阿里巴巴国际站怎么开店系列文章目录 第一章 Python 机器学习入门之线性回归 第一章 Python 机器学习入门之梯度下降法 第一章 Python 机器学习入门之牛顿法 第二章 Python 机器学习入门之逻辑回归 逻辑回归 系列文章目录前言一、逻辑回归简介二、逻辑回归推导1、问题2、Sigmoid函数3、目标函数3.1 让…

系列文章目录

第一章 Python 机器学习入门之线性回归
第一章 Python 机器学习入门之梯度下降法
第一章 Python 机器学习入门之牛顿法
第二章 Python 机器学习入门之逻辑回归

逻辑回归

  • 系列文章目录
  • 前言
  • 一、逻辑回归简介
  • 二、逻辑回归推导
    • 1、问题
    • 2、Sigmoid函数
    • 3、目标函数
      • 3.1 让步比
      • 3.2 极大似然估计
      • 3.3 推导
    • 4、代价函数
    • 5、最大化似然函数
  • 三、逻辑回归实现
    • 结果展示

前言

第二次实验开始了,内容是逻辑回归,听起来像是线性回归的兄弟,然而仔细查阅后发现逻辑回归其实是一种分类算法;

我们知道回归算法的结果建立在连续的数据上,分类算法的结果建立在离散的数据上;因此逻辑回归本质上是一种分类算法,那问题就来了,一个分类算法为啥叫回归呢?
在这里插入图片描述

一、逻辑回归简介

百科定义:
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。

简单来说,逻辑回归还是建立在我们之前学习的线性回归模型基础上,使用回归的方法来实现分类的目的;就好像同在一个专业学习,有些人学习计算机是为了成为一个优秀的程序员,有些人学计算机是为了挑选出优秀的程序员,结果不一样但在过程中是有很多的相似之处的。

二、逻辑回归推导

1、问题

假设你是一个大学系的管理员,你想根据两个考试的结果确定每个申请人的录取机会。您可以将以前申请者的历史数据用作逻辑回归的培训集。对于每个培训示例,您都有申请人的两次考试成绩和录取决定。为了实现这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。(取自吴恩达机器学习中文版课后题)

先来分析一下,如果我们现在使用线性回归模型来分析该该题,我们最后得出的结论应该是根据考试成绩来预测入学成绩,但是现在结果需要我们来判断是否能成功入学,那我们就在此基础上对之前的入学成绩设定阈值,根据该阈值对结果进行分类来选择是否录取;

但是线性回归模型往往是一条斜线,如何满足结果不是0就是1呢?因此我们引入了Sigmoid函数。

2、Sigmoid函数

先看一下线性回归模型假设函数
在这里插入图片描述
sigmoid函数公式如下
在这里插入图片描述
将线性回归模型的预测值视为上式的自变量z,可得出下图结果
在这里插入图片描述
然而上图结果仍然不是我们真正需要的结果,我们需要的是一个二元离散模型,结果非1即0,因此我们还需处理一下,根据与阈值的差值判断结果
blog.csdnimg.cn/cc9d8f8ac08e47b98b2d5b5d49bf941e.png)
当y ̂ ==0.5时,我们根据实际情况来定;同时上面的阈值是我们手动设置的(并不一定需要0.5),依情况而定,这也是逻辑回归模型的优势之一

3、目标函数

在上面的sigmiod函数上我们建立了逻辑回归的假设函数,我们想要得到它的目标函数,首先得知道自变量X和结果变量y之间的关系,因此我们引入两个概念让步比极大似然估计

3.1 让步比

让步比可以理解成有利于某一特定事件的概率,如下
在这里插入图片描述

3.2 极大似然估计

思想:如果一个事件发生了,那么发生这个事件的概率就是最大的;对于样本i,其类别为
y ̂ ∈(0,1),对于样本i,可以把h(Xi)看成是一种概率;yi对应是1时,概率是h(Xi)(即Xi属于1的概率,即p(Y=1|X));yi对应是0时,概率是1-h(Xi)(Xi属于0的概率,即p(Y=0|X)

已知下式
在这里插入图片描述
在这里使用极大似然估计做一个假设,假设y ̂ 为样本x为正例的概率,那么1-y ̂ 为样本x为负例的概率

在此基础上我们可以将让步比的对数形式转成特征值相关式子;
在这里插入图片描述
然而我们更想要的是预测值和它发生的概率之间的关系,即让步比之间的逆形式
在这里插入图片描述

3.3 推导

已知样本X结果分类的概率
在这里插入图片描述
将上式联系得y的概念分布函数
在这里插入图片描述
通过y的概率分布函数表达式即可得似然函数为(m为样本数量)
在这里插入图片描述
通过似然函数得到对数似然函数即目标函数
在这里插入图片描述

4、代价函数

对于二分类问题,分别考虑y=1和y=0的情况
在这里插入图片描述

5、最大化似然函数

最大似然估计是似然函数最初也是最自然的应用,似然函数取得最大值表示相应的参数能够使得统计模型最为合理
可以使用梯度上升法和牛顿法两种优化方法,这里说一下梯度上升法,本质和之前的梯度下降原理一一样,展开一阶梯度来求最优解;先求目标函数对参数w的偏导

在这里插入图片描述
因此逻辑回归模型的梯度下降函数如下,wj代表第j个模型参数
在这里插入图片描述

三、逻辑回归实现

结果展示

在这里插入图片描述

http://www.yayakq.cn/news/752216/

相关文章:

  • 商丘市做1企业网站的公司河北建设工程信息网登陆
  • 商铺免费做的网站最好用的手机优化软件
  • 鄂州网站建设价格wordpress去
  • 上市公司网站分析wordpress模板怎么更换
  • 网站开发管理工具有哪些保定seo排名公司
  • 免费企业网站报价手机网游
  • 个人网站做什么好株洲seo优化排名
  • 网站上发布的内容字体多少合适山西品牌设计公司
  • 可以免费做试卷题目的网站猪八戒设计平台官网
  • 做网络平台的网站有哪些2024全民核酸又开始了
  • 宝塔做网站可以用什么端口网络服务商是指什么
  • 个人网站服务器一年多少钱官方网站建设投标书
  • 台州企业网站搭建特点园林公司网站建设费用
  • 网站是用什么语言写的hexo框架做网站
  • 如何给网站死链接做404wordpress+程序优化
  • 类似云盘 网站开发世界500强企业2021
  • 上海网站推广定制临沂企业建站程序
  • 网站页面设计报价模板深圳app开发公司报价
  • 智联招聘网站怎么做微招聘刷QQ砖的网站咋做
  • 网站建设动图代码免费网络推广软件
  • 做医美设计的网站网页设计入门代码
  • 微信企业网站什么软件可以建网站
  • 杭州网站建设优化案例惠州网站设计培训
  • 厦门网站设计大概多少钱wordpress网站设置关键词
  • 网站 不稳定长春做网站好的公司
  • 酒店网站模版网站空间是啥
  • 华美天一建筑公司网站什么是网络营销方法
  • 用php制作一个个人信息网站杭州网站建设科技有限公司
  • 教育企业网站源码网页游戏排行2020前十名
  • 做网站软件是什么下载品牌营销策划方案ppt