当前位置: 首页 > news >正文

做儿童交互网站百度搜索引擎排行榜

做儿童交互网站,百度搜索引擎排行榜,管理部门网站建设说明书,企业画册设计公司数据集要求: 训练集 和 验证集 (要求分好) 图片放置规则 : 一个总文件夹 放类别名称的子文件夹 其中子文件夹 为存放同一类别图片 举个例子 分类动物 则 总文件夹名称为动物 子文件夹为 猫 狗 猪猪 。。。 其中猫的文件夹里面…

数据集要求: 训练集 和 验证集 (要求分好) 

图片放置规则 : 一个总文件夹 放类别名称的子文件夹 其中子文件夹 为存放同一类别图片

举个例子 分类动物 则 总文件夹名称为动物 子文件夹为 猫 狗 猪猪 。。。

其中猫的文件夹里面都是猫

给出代码:

import os
import cv2
import numpy as np
import logging
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix# 设置日志
logging.basicConfig(filename='training_log.txt', level=logging.INFO, format='%(asctime)s - %(message)s')# 读取图像数据和标签
def load_images_from_folder(folder):images = []labels = []label = 0for subdir in os.listdir(folder):subpath = os.path.join(folder, subdir)if os.path.isdir(subpath):for filename in os.listdir(subpath):if filename.endswith(".jpg"):img_path = os.path.join(subpath, filename)img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)img_normalized = cv2.resize(img, (256, 256))  # 归一化图像大小为256x256images.append(img_normalized.flatten())labels.append(label)label += 1return images, labels# 主函数
def main():# train_folder = "YOUR_TRAIN_DATASET_FOLDER_PATH"  # 替换为你的训练集文件夹路径# test_folder = "YOUR_TEST_DATASET_FOLDER_PATH"    # 替换为你的测试集文件夹路径train_folder = "/Users/chen_dongdong/Desktop/宝钢项目/little_work/train"  # 替换为你的训练集文件夹路径test_folder = "/Users/chen_dongdong/Desktop/宝钢项目/little_work/val"    # 替换为你的测试集文件夹路径logging.info("Loading training data from %s", train_folder)X_train, y_train = load_images_from_folder(train_folder)logging.info("Loaded %d training samples", len(X_train))logging.info("Loading test data from %s", test_folder)X_test, y_test = load_images_from_folder(test_folder)logging.info("Loaded %d test samples", len(X_test))logging.info("Training DecisionTreeClassifier...")clf = DecisionTreeClassifier()clf.fit(X_train, y_train)logging.info("Training completed.")y_pred = clf.predict(X_test)accuracy = accuracy_score(y_test, y_pred)logging.info("Test Accuracy: %f", accuracy)cm = confusion_matrix(y_test, y_pred)cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]logging.info("Normalized Confusion Matrix:")for row in cm_normalized:logging.info(" - ".join(map(lambda x: "{:.2f}".format(x), row)))# 打印特征重要性feature_importances = clf.feature_importances_top_features = np.argsort(feature_importances)[-10:]  # 打印最重要的10个特征logging.info("Top 10 important features:")for idx in top_features:logging.info("Feature %d: %f", idx, feature_importances[idx])if __name__ == "__main__":main()

使用DecisionTreeClassifierfeature_importances_属性。这个属性会返回一个数组,其中每个值表示相应特征的重要性。值越大,特征越重要。

我们使用的是图像的灰度值作为特征,所以特征的数量会非常大(例如,对于256x256的图像,有65536个特征)。为了简化输出,我们可以只打印出最重要的特征。

这是我们生成的日志文件 

使用sklearn的决策树分类器和opencv来处理图像数据。这个脚本将:

  1. 从指定的文件夹中读取所有子文件夹中的图像。
  2. 将图像转换为灰度。
  3. 将灰度图像转换为一维数组作为特征。
  4. 使用决策树分类器进行训练。
  5. 输出模型的准确性。

请确保已经安装了opencvsklearn库。

pip install opencv-python-headless
pip install scikit-learn


 可加镜像

pip install 镜像-CSDN博客

在训练过程中记录关键的信息,例如每次迭代的训练损失、验证损失、准确性等。但由于我们在此使用的是DecisionTreeClassifier,它不像深度学习模型那样进行多次迭代,所以我们只能记录模型的最终准确性和混淆矩阵。

http://www.yayakq.cn/news/956881/

相关文章:

  • 网站ie不兼容wordpress邮箱qq接入
  • 河南平安建设网站网站 页面 结构
  • 做网站有没有前景旅游网站建设案例分析
  • 好的网站或网页推荐上海搬家公司电话价格表
  • vue.js网站建设百度竞价推广专员
  • 吉隆坡建设大学中文网站建设银行网站logo
  • 网站诚信备案青岛外发加工网
  • 网站建设奖项怎么做代理ip网站
  • 网站查询关键词排名软件企业网站建设的总体架构
  • 网站宣传专利被罚网络运行维护
  • 世界之窗附近做网站公司微信小程序开发收费
  • 医院网站建设 利法拉网络餐饮 网站 模板
  • jsp 网站建设郑州网站建设 郑州网站制作
  • 中信建设有限责任公司官网英文seo外包收费
  • 商业街网站建设方案宁波产品网站设计模板
  • 如何规避电子政务门户网站建设商城网页制作
  • 网站建设项目报价wordpress用户中心授权码
  • 1m的带宽做网站可以吗网页小游戏显示插件不支持怎么办
  • 驻马店网站开发公司电话企业网站 程序
  • 有没有做游戏评测的网站姜堰网站建设
  • 网站建设土豆视频教程wordpress 压缩下载
  • 成都系统网站建设开发app需要多少人
  • 做网站小程序企业网站建设视频教程
  • 建设银行辽宁分行招聘网站招工信息发布平台
  • 网站安全狗 拦截301wordpress文章加背景
  • 百度站长工具app免费建立个人网站的哪些平台好
  • 北京建站推广wordpress 悬浮 插件
  • 青岛网站设计微动力万网域名中文网站查询
  • 城市网站改版建设大丰专业做网站的公司
  • 网站建设的关键技术网站建设网络推广柯