当前位置: 首页 > news >正文

电脑做系统哪个网站比较好用端游网络游戏排行榜

电脑做系统哪个网站比较好用,端游网络游戏排行榜,泰安网站优化推广,html 单页网站目录 一.树概念及结构 1.1树的概念 1.2树的表示 二.二叉树的概念及结构 2.1概念 2.2二叉树的特点 2.3现实中的二叉树 2.4数据结构中的二叉树 2.5 特殊的二叉树 2.6二叉树的存储结构 2.6.1二叉树的性质 2.6.2 顺序结构 2.6.3链式存储 三. 二叉树的链式结构的遍历 …

目录

一.树概念及结构

1.1树的概念

1.2树的表示

二.二叉树的概念及结构

2.1概念

2.2二叉树的特点

2.3现实中的二叉树

2.4数据结构中的二叉树

2.5 特殊的二叉树

2.6二叉树的存储结构

2.6.1二叉树的性质

2.6.2 顺序结构

2.6.3链式存储

三. 二叉树的链式结构的遍历


一.树概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点,称为根结点,根节点没有前驱结点

除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以

有0个或多个后继

因此,树是递归定义的

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
 

叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:

A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林

1.2树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法

typedef int DataType;
struct Node
{struct Node* _firstChild1;  // 第一个孩子结点struct Node* _pNextBrother; // 指向其下一个兄弟结点DataType _data;             //节点中的数据域
};

二.二叉树的概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

2.2二叉树的特点

1. 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
2. 二叉树的子树有左右之分,其子树的次序不能颠倒。

2.3现实中的二叉树

2.4数据结构中的二叉树

2.5 特殊的二叉树

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树

2.6二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构(数组顺序表),一种链式结构(链表)

2.6.1二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1.
3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2+1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=Log2(n+1). (ps:Log2(n+1)是log以2为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

2.6.2 顺序结构

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2.6.3链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链

三. 二叉树的链式结构的遍历

所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问 题。 遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算之基础

前序/中序/后序的递归结构遍历:是根据访问结点操作发生位置命名
 

1. NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
2. LNR:中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。

3. LRN:后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

http://www.yayakq.cn/news/574152/

相关文章:

  • 优秀的网页设计网站江门h5模板建站
  • 做网站一定要用ps吗常州高端网站建设公司哪家好
  • 网站开发需要的编程软件哈尔滨网站优化
  • 做钉子出口哪个网站好艺术生搭建wordpress个人博客
  • 云南网站建设网站运营wordpress 中英
  • 来宾住房与城乡建设网站全网营销老婆第一人黑料
  • 人工智能ai写作网站免费机关网站建设的请示
  • 用开源源码做淘宝客网站hs网站推广
  • 网站开发的经验技巧搭建网站要用到的工具
  • 网站被k了怎么做如何做网络推广推广
  • 网站照片如何处理wordpress的页面图片排版
  • seo是指什么意思合肥百度推广优化排名
  • 做境外旅游的网站元旦ppt模板免费下载
  • 中卫网站推广网络营销wordpress照片exif
  • wordpress站内搜索慢成都有什么互联网公司
  • seo与网络推广的区别和联系网站seo搜索
  • 263云通信官方网站漂亮的网站底部代码
  • 定制网站建设和运营网络营销中的seo与sem
  • 网站建设与维护专业实训室网站前端如何做兼职
  • 网做 网站有哪些wordpress关键字回复
  • 软件开发培训需要多少钱wordpress KeyWords优化
  • 网站遮罩是什么一键制作网页
  • 太原规划网站弄网站赚钱吗
  • 伪装学渣无极网站河南省濮阳市建设局网站
  • 网站模板库免费怎么网站显示翻页代码
  • 软工毕设做网站win10优化大师免费版
  • 私人订制app软件灵宝seo公司
  • 青岛建设交易中心网站首页网站建设及优化 赣icp
  • 网站使用什么数据库甘肃省水利工程建设网站
  • 论述网站建设的主要内容达州大亚网站建设