当前位置: 首页 > news >正文

本机可以做网站的服务器吗phpcms 视频网站模板

本机可以做网站的服务器吗,phpcms 视频网站模板,手游推广平台代理,wordpress商城主题模板分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测 目录 分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测效果一览基本介绍研究内容程序设计参考资料 效果一览 基本介绍 Matlab实现分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预…

分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测

目录

    • 分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测
      • 效果一览
      • 基本介绍
      • 研究内容
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现分类预测 | Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测(Matlab完整程序和数据)
凌日优化卷积神经网络结合门控循环单元融合注意力机制的数据分类预测是一种复杂的模型架构,旨在提高数据分类任务的性能。下面我将逐步介绍这个模型的各个组成部分。CNN是一种在图像处理和计算机视觉任务中广泛应用的神经网络架构。它通过卷积层、池化层和全连接层构成,能够自动提取输入数据的特征。GRU是一种常用的循环神经网络(Recurrent Neural Network, RNN)变体,用于处理序列数据。GRU通过门控机制控制信息的流动,可以更好地捕捉序列中的长期依赖关系。注意力机制(Attention Mechanism):注意力机制可以帮助模型在处理序列或特征时,自动地选择相关的部分进行聚焦。它通过给予不同部分的权重,使模型能够更加专注于与任务相关的信息。凌日优化是一种优化算法,用于改进神经网络的训练过程。它可以减少模型训练时的过拟合问题,并提高模型的泛化能力。在这个模型中,卷积神经网络用于提取输入数据的空间特征,门控循环单元用于处理序列数据的时间特征。注意力机制则用于自适应地选择卷积神经网络和门控循环单元中最相关的特征部分,以帮助模型更好地进行分类预测。
整个模型的训练过程将使用凌日优化算法进行参数优化,以提高模型的性能和泛化能力。通过结合卷积神经网络、门控循环单元和注意力机制,这个模型可以更好地处理多维数据,提取有效的特征,并实现更准确的数据分类预测。

研究内容

1.TSOA-CNN-GRU-Attention凌日优化卷积神经网络结合门控循环单元融合注意力机制的数据分类预测,MATLAB程序,要求MATLAB 2021版及以上。
2.多变量特征输入,优化了学习率、卷积核大小及神经元个数等,方便增加维度优化其它参数。
3.由于优化时间与最大迭代次数有关,故为了展示程序结果,设定的迭代次数较少。适用于轴承故障识别/诊断/分类,变压器油气故障识别识别/诊断/分类,电力系统输电线路故障区域识别/诊断/分类,绝缘子、配网故障识别/诊断/分类等等。
4.凌日优化算法(Transit Search Optimization Algorithm,TSOA)是2023年提出的一种新颖的元启发式算法,当一颗行星经过其恒星前方时,会导致恒星的亮度微弱地下降,这被称为凌日现象。一种新颖的天体物理学启发的元启发式优化算法中提取出来的,该算法基于著名的系外行星探索方法,即凌日搜索(TS)。在凌日算法中,通过研究在一定间隔内从恒星接收到的光,检查亮度的变化,如果观察到接收到的光量减少,则表明行星从恒星锋面经过。创新性较高。
4.直接替换数据就可以,使用EXCEL表格直接导入,不需要对程序大幅修改。程序内有详细注释,便于理解程序运行。
多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。

程序设计

  • 完整程序和数据下载方式:私信博主回复Matlab实现基于TSOA-CNN-GRU-Attention的数据分类预测
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test ;%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

http://www.yayakq.cn/news/691035/

相关文章:

  • 信息类网站制作手机视频转码vue
  • 购物网站建设个人总结最差网站设计
  • 购物网站建设计划书网站制作最
  • 企业怎么做网站推广前端机构培训
  • 青岛建设银行股份有限公司网站首页广告制作费
  • 天空网站开发者90设计网站创建时间
  • 资料库网站源码wordpress难吗
  • 搭建网站费用电脑网站在哪里找
  • 长沙 外贸网站建设公司排名轻量级网站开发
  • 建设公司网站标题郴州新网招聘信息招聘频道
  • 环保网站建设说明线上商城怎么开
  • 技能训练企业网站建设可行性分析自己黑自己做的网站
  • 手机网站营销新华舆情监测平台
  • 一起做彩票网站的人vps建站教程
  • 农业开发公司好名字金融网站排名优化
  • 事业单位网站备案流程宁波专业外贸网站建设
  • 花都区手机版网站建设网站 网络推广
  • 网站流量指的是什么意思小公司简介ppt介绍范本
  • 企业建设营销网站的基本步骤网页制作教程dw
  • 大概多少钱天长网站seo
  • 做古风头像的网站wordpress修改文章id
  • 做教程网站资源放哪里有建网站要多少费用
  • 在线编程网站开发网站架构教程
  • 网站建设流程详解怎么用VS2012建设网站
  • 把别人的图片拿来做网站wordpress文章内容
  • 免费网站制作报价做网站实时数据用接口
  • 韩国风格网站php源码浮山网站建设
  • 潮汕学院网站开发电脑上做免费网站教程视频
  • 网站建设费用报告网络搭建与维护
  • 免费建站手机软件莒县网页定制