当前位置: 首页 > news >正文

网络推广就是做网站吗保险网上预约

网络推广就是做网站吗,保险网上预约,嵌入式开发板,权威的网站建设公司前言 \quad~~一直都在想为啥子离散选择模型中分散系数以分母形式出现而在路径选择公式中以系数形式出现呢?看着公式想了想,现在想出了一个似乎感觉应该差不多很合理的答案,希望与大家一起探讨。 进入正题 根据随机效用理论,决策…

前言

\quad~~   一直都在想为啥子离散选择模型中分散系数以分母形式出现而在路径选择公式中以系数形式出现呢?看着公式想了想,现在想出了一个似乎感觉应该差不多很合理的答案,希望与大家一起探讨。

进入正题

根据随机效用理论,决策者在面对 nnn 个备选方案做选择时,会根据自身的意愿感知哪一个备选方案对自身而言是最好的,从而作出自身选择。这里的最好用数量来进行衡量就可以说是效用最高的

比如从A点到B点共有 nnn 条路,我现在需要从A点到B点,从节约时间的角度来考虑的话,那么我肯定希望选择最快捷的一条路。即如果我能以最快的时间到达我的目的地的话,对我而言,我就得到了最高的出行效用。

通常呢,我们的感知能力是有限的,如果我们记选择任意一个方案 jjj 的效用为 UjU_jUj,那么 UjU_jUj 为一个随机变量,它可以分为两部分,一部分呢是我们可以以实际那数字量化出来的,我们称为系统效用。另一部分呢为我们无法测量出来的,或估测时的误差,为一个随机变量,我们称为感知误差项。因此这里的方案 jjj 的效用 UjU_jUj 就可以写为系统效用 VjV_jVj 与随机误差项 εj\varepsilon_jεj 的和,即:
Uj=Vj+εj.(1)U_j=V_j+\varepsilon_j.\tag{1}Uj=Vj+εj.(1)
在多项式Logit模型中,我们假设随机误差项 εj\varepsilon_jεj 服从零均值的Gumbel分布,其概率密度函数与累积分布函数分别为:
f(x)=1θexp(−xθ−Φ)exp[−exp(xθ−Φ)],(2)f(x)=\frac{1}{\theta}exp(-\frac{x}{\theta}-\Phi)exp[-exp(\frac{x}{\theta}-\Phi)],\tag{2}f(x)=θ1exp(θxΦ)exp[exp(θxΦ)],(2)F(x)=Pr(εj≤x)=exp[−exp(xθ−Φ)],(3)F(x)=Pr(\varepsilon_j\leq x)=exp[-exp(\frac{x}{\theta}-\Phi)],\tag{3}F(x)=Pr(εjx)=exp[exp(θxΦ)],(3)这里的参数 Φ\PhiΦ 为欧拉常数,Φ≈0.577\Phi\approx0.577Φ0.577
从而可以得出决策者选择备选方案 jjj 的概率为:pj=Pr(Uj>Uk,∀k≠j)=exp(Vj/θ)∑kexp(Vk/θ).(4)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j/\theta)}{\sum_k exp(V_k/\theta)}.\tag{4}pj=Pr(Uj>Uk,k=j)=kexp(Vk/θ)exp(Vj/θ).(4)

而通常在路径选择情形中我们以出行阻抗作为我们的出行负效用(因为我们出行就会花费时间,金钱等,这都属于是对我们自身资源的一种消耗),负效用越小的路径被选择的可能性就会越大。这里呢,同样因为人们的感知,计算等能力有限,我们所判定的出行负效用也为一个随机变量,为可直接估量的系统效用与随机误差项的和。同样以路径 jjj 为例,其感知出行负效用为 CjC_jCj, 可进行估测的系统效用为 cjc_jcj,随机误差项为 ξj\xi_jξj, 则 CjC_jCj 就可写为:
Cj=cj+ξj,(5)C_j=c_j+\xi_j,\tag{5}Cj=cj+ξj,(5)那么选择路径 jjj 的效用就可以写为:Uj=−Cj,(6)U_j=-C_j,\tag{6}Uj=Cj,(6)那么我们使用概率密度函数公式 (2) 计算得出的选择路径 jjj 的概率为:
pj=Pr(Uj>Uk,∀k≠j)=exp(−cj/θ)∑kexp(−ck/θ).(7)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-c_j/\theta)}{\sum_k exp(-c_k/\theta)}.\tag{7}pj=Pr(Uj>Uk,k=j)=kexp(ck/θ)exp(cj/θ).(7)但通常呢,路径选择概率会写为如下形式:
pj=Pr(Uj>Uk,∀k≠j)=exp(−θcj)∑kexp(−θck).(8)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-\theta c_j)}{\sum_k exp(-\theta c_k)}.\tag{8}pj=Pr(Uj>Uk,k=j)=kexp(θck)exp(θcj).(8)所以公式 (7) 和 (8) 同样是路径选择概率公式为什么不一样呢?

解决问题

观察概率密度函数,即公式 (2), 如果令 y=−xθy=-\frac{x}{\theta}y=θx, 那么就有f(−θy)=1θexp(y−Φ)exp[−exp(y−Φ)],(9)f(-\theta y)=\frac{1}{\theta}exp(y-\Phi)exp[-exp(y-\Phi)],\tag{9}f(θy)=θ1exp(yΦ)exp[exp(yΦ)],(9)那么θf(−θy)=exp(y−Φ)exp[−exp(y−Φ)],(10)\theta f(-\theta y)=exp(y-\Phi)exp[-exp(y-\Phi)],\tag{10}θf(θy)=exp(yΦ)exp[exp(yΦ)],(10)对应的累积分布函数为θF(−θy)=exp[−exp(y−Φ)],(11)\theta F(-\theta y)=exp[-exp(y-\Phi)],\tag{11}θF(θy)=exp[exp(yΦ)],(11)看着公式 (10) 和公式 (11) 是不是相对于(2),(3) 来说更简洁呢?公式 (10) 和公式 (11) 变成了零均值的标准Gumbel分布。所以如果公式(2)为随机变量 εj\varepsilon_jεj 的概率密度函数,从简化的角度来看,我们是不是可以让随机变量 ξj=−εj/θ\xi_j =- \varepsilon_j/\thetaξj=εj/θ,即εj=−θξj\varepsilon_j= -\theta \xi_jεj=θξj,那么为了统一公式 (6),我们可以令 Vj=−θcjV_j = -\theta c_jVj=θcj,那么 εj\varepsilon_jεj 经过处理后的概率密度函数就可以表示为公式 (10) 和公式 (11),即选择路径 jjj 的概率就表示为pj=∫−∞+∞exp[−exp(εj+Vj−Vk−Φ)]∗exp(εj−Φ)exp[−exp(εj−Φ)]dεj,(12)p_j=\int_{-\infty}^{+\infty}exp[-exp(\varepsilon_j+V_j-V_k-\Phi)]* \\ exp(\varepsilon_j-\Phi)exp[-exp(\varepsilon_j-\Phi)]d\varepsilon_j, \tag{12}pj=+exp[exp(εj+VjVkΦ)]exp(εjΦ)exp[exp(εjΦ)]dεj,(12)
整理可得概率公式为:pj=Pr(Uj>Uk,∀k≠j)=exp(Vj)∑kexp(Vk),(13)p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j)}{\sum_k exp(V_k)},\tag{13}pj=Pr(Uj>Uk,k=j)=kexp(Vk)exp(Vj),(13)Vj=−θcjV_j = -\theta c_jVj=θcj代入公式 (13),即得到公式 (8)。

http://www.yayakq.cn/news/705112/

相关文章:

  • 上海专业做网站公司电话廊坊手机网站团队
  • 是否网站备案公积金门户网站建设方案
  • 佛山网站建设佛山石龙镇网站建设公司
  • 视频分享网站建设难吗佛山网络公司策划
  • 学生如何自己做网站ASP做购物网站视频
  • 亳州市建设局网站宜宾有什么大型网站建设公司
  • 广东深圳网站建设服务网站地址大全
  • 最好加盟网站建设浙江建设厅网站 打不开
  • 上海黄浦 网站建设网站样式用什么做的
  • 给公众号做头像的网站好的排版设计网站
  • 大型公司网站制作wordpress主题 手机端
  • 做库房推广哪个网站好怎么找做企业网站的
  • 网站建设要学习什么软件开发培训学费
  • 宿迁网站seo百度网站评级
  • 中煜建设有限公司网站西安市建网站找哪家
  • 什么网站是html5做的企业做营销型网站
  • 电子商务网站建设与管理思考与练习鹧鸪哨网站1v1深度开发
  • 企业自助建站系统源码wordpress word文档
  • 商城网站怎么做推广方案一个网站平台建设得多少钱
  • 网站建设项目实施计划书专业展馆展厅设计
  • 开发区建网站外包义乌哪里做网站好
  • 广东省建设注册执业资格中心网站微网站简介
  • 视觉网站建设衡水冀县做网站
  • spoc课程网站建设深圳做网站要多
  • 网站建设中标公告怎么做企业网站建设
  • 免费注册个人网站官网wordpress不支持中文标签
  • 网站页脚需要放什么用网站建设客户常问到的问题
  • 做免费网站网站seo问题
  • 中国十大门户网站排行关于网站开发书籍
  • 郑州交易网站建设内蒙建设厅网站