当前位置: 首页 > news >正文

网站建设黄页视频wordpress调整语言

网站建设黄页视频,wordpress调整语言,如何用apache建设网站,电商公司经营范围强化学习算法总结 (1) 1.综述 强化学习是通过与环境进行交互,来实现目标的一种计算方法。 s − a 1 − r − s ′ s - a_1 - r- s s−a1​−r−s′ 1.1强化学习优化目标 p o l i c y a r g m a x p o l i c y E ( a , s ) [ r e w a r d ( s , a ) ] policy ar…

强化学习算法总结 (1)

1.综述

强化学习是通过与环境进行交互,来实现目标的一种计算方法。
s − a 1 − r − s ′ s - a_1 - r- s' sa1rs

1.1强化学习优化目标

p o l i c y = a r g m a x p o l i c y E ( a , s ) [ r e w a r d ( s , a ) ] policy= argmax_{policy} E_{(a,s)}[reward(s,a)] policy=argmaxpolicyE(a,s)[reward(s,a)]

强化学习的最终目标是最大化智能体策略在和环境交互中获得的reward。通过改变策略来调整智能体和环境交互数据的分布。

1.2 平衡与探索

​ 策略告诉我们应该采取哪些动作,同时也要对新的策略进行探索。

这里引入一个概念为懊悔值,当前动作a的收益与最优结果的差距

  • ϵ − g r e e d y \epsilon - greedy ϵgreedy

策略
i f : 采样概率: 1 − ϵ a t = a e g m a x Q ( a ) e l s e : 随机策略 if:采样概率:1 - \epsilon \\ a_t = aegmaxQ(a)\\ else:\\ 随机策略 if:采样概率:1ϵat=aegmaxQaelse:随机策略
但是结果来看积累的懊悔值是和和时间成正比的,因为随机拉杆的探索概率是固定的

  • 上置信界法UCB

a t = a r g m a x α [ Q ( A ) ] a_t = argmax_\alpha [Q(A)] at=argmaxα[Q(A)]

  • 汤普森采样

2. 马尔科夫决策过程

MDP:利用当前已知的信息就可以决定未来

采样:根据状态转移矩阵生成一个状态序列 s 1 − > s 2 − > . . . − > s n s_1 -> s_2 -> ...-> s_n s1>s2>...>sn

2.1 马尔科夫奖励过程

在决策过程中加入了奖励函数r和折扣因子,形成了马尔科夫奖励过程 < S , P , r , γ > <S,P,r,\gamma> <S,P,r,γ>,状态集合,状态转移矩阵,奖励函数,折扣因子
G t = R t + γ R t + 1 . . . = ∑ γ k R t + k G_t = R_t+ \gamma R_{t+1}... = \sum \gamma^k R_{t+k} Gt=Rt+γRt+1...=γkRt+k

  • 价值函数
    V ( s ) = E [ G t ∣ S t = s ] 我们把 G t 拆开 R t + γ V ( s t + 1 ) 而后面的 E ( γ V ( s t + 1 ∣ s t = s ) ) 用状态转移函数表示 V ( s ) = r ( s ) + γ ∑ P ( s ′ ∣ s ) V ( s ′ ) V(s) = E[G_t |S_t =s]\\我们把G_t 拆开R_t +\gamma V(s_{t+1}) 而后面的E(\gamma V(s_{t+1}|s_t =s)) 用状态转移函数表示\\V(s) = r(s) +\gamma\sum P(s'|s)V(s') V(s)=E[GtSt=s]我们把Gt拆开Rt+γV(st+1)而后面的E(γV(st+1st=s))用状态转移函数表示V(s)=r(s)+γP(ss)V(s)

只适用于规模比较小的马尔科夫过程计算价值函数,不然使用 MC,TD,动态规划等算法

2.2 马尔科夫决策过程

MDP;<S,A,P,r, γ \gamma γ>:这里不再使用状态转移矩阵,而是状态转移函数

  • S:状态合集
  • A:动作合集
  • γ \gamma γ:折扣因子
  • r(s,a):奖励函数,收到了s和a影响
  • P(s’|s,a):状态转移函数

策略 π ( a ∣ s ) = P ( A t = a ∣ S t = s ) \pi(a|s) = P(A_t = a| S_t =s) π(as)=P(At=aSt=s):表示当前状态下,采取这个策略a的概率。如果是一个随机策略,输出是关于动作的概率分布函数

  • 状态价值函数
    V π = E π [ G t ∣ S t = s ] V^{\pi} = E_{\pi}[G_t | S_t = s] Vπ=Eπ[GtSt=s]
    当前状态下,预计未来的收益

  • 动作价值函数
    Q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] Q^{\pi}(s,a) = E_\pi[G_t | S_t = s ,A_t =a] Qπ(s,a)=Eπ[GtSt=s,At=a]
    在遵循当前策略下,执行动作a的收益

V π ( s ) = ∑ π ( a ∣ s ) Q π ( s , a ) V^\pi(s) = \sum\pi(a|s) Q^\pi (s,a) Vπ(s)=π(as)Qπ(s,a)

  • 贝尔曼期望方程

Q π ( s , a ) = E π [ R t + γ Q π ( s ′ , a ′ ) ∣ S t = s , A t = a ] = r ( s , a ) + γ ∑ V ( s ′ ) = r ( s , a ) + γ ∑ P ( s ′ ∣ a , s ) ∑ π ( a ′ ∣ s ′ ) Q π ( s ′ , a ′ ) Q^\pi (s,a) = E_\pi[R_t+\gamma Q^\pi(s',a')|S_t= s,A_t = a] \\= r(s,a) +\gamma\sum V(s') \\= r(s,a) +\gamma\sum P(s'|a,s)\sum \pi(a'|s')Q^\pi(s',a') Qπ(s,a)=Eπ[Rt+γQπ(s,a)St=s,At=a]=r(s,a)+γV(s)=r(s,a)+γP(sa,s)π(as)Qπ(s,a)

V π ( s ) = E π [ R t + γ V π ( s ′ ) ∣ S t = s ] = ∑ π ( a ∣ s ) ( r ( s , a ) + γ ∑ P ( s ′ ∣ s , a ) V π ( s ′ ) ) V^\pi(s) = E_\pi[R_t+\gamma V^\pi(s')|S_t = s] =\\\sum\pi(a|s)(r(s,a)+\gamma\sum P(s'|s,a)V^\pi(s')) Vπ(s)=Eπ[Rt+γVπ(s)St=s]=π(as)(r(s,a)+γP(ss,a)Vπ(s))

http://www.yayakq.cn/news/696586/

相关文章:

  • 已有网站开发app终端陕西网络公司网站建设
  • 网站建设通俗讲小程序电商系统开发
  • 网站设计过程中需要注意的问题温州网站排名团队
  • 长春建网站短链生成网站
  • 网站后台模板 仿cnzz网站建设方案基本流程
  • 南宁网站建站推广平台建设费用包括哪些
  • 常州建设局网站appui设计图
  • 能看任何网站的浏览器做外贸营销网站销售咋样
  • 站长之家域名解析注册安全工程师科目
  • 公司官方网站一般什么公司做找人做短视频网站
  • 可以做点赞的网站赚钱wordpress如何优化速度
  • 音乐网站建设规划自己做网站卖东西可以
  • 网站无域名注册人id做网站挂广告 刷广告
  • 唐山网站建设优化嵌入式开发的系统
  • 抚养网站建设上海住房和城市建设厅网站
  • 心理咨询网站建设做网站为什么要服务器
  • 怎样建设大型网站wordpress 社交链接
  • 南通网站排名优化价格网站设计案例公司
  • 域名备案要先做网站的吗微信h5的制作方法
  • 自个做网站教程建站教程流程图
  • 站长源码商城微网站创建
  • 网站搭建团队做网站送商标
  • o2o网站系统建设微网站和网站同步像素
  • 中国农业工程建设协会网站舆情分析网站免费
  • 网站开发中设置会员等级常宁网站制作
  • 百度收录网站入口哪家app定制开发好
  • 怎么做免费推广网站做专业网站设计多少钱
  • 台州网络建站模板芜湖seo网站优化
  • vi手册网站制作优化推广
  • 宁夏百度网站怎么做建设教育网站