当前位置: 首页 > news >正文

网站感谢页面河北省城乡建设厅网站

网站感谢页面,河北省城乡建设厅网站,网络服务采购,百度收录网站与手机版Python学习笔记第五十五天 Pandas CSV 文件read_csv()to_string()to_csv() 数据处理head()tail()fillna() info() 后记 Pandas CSV 文件 CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号…

Python学习笔记第五十五天

  • Pandas CSV 文件
    • read_csv()
    • to_string()
    • to_csv()
  • 数据处理
    • head()
    • tail()
      • fillna()
    • info()
  • 后记

Pandas CSV 文件

CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。

CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。

read_csv()

Pandas 可以很方便的处理 CSV 文件,本文以 data.csv 为例,你可以下载 data.csv 或打开 data.csv 查看。

# 实例 1
import pandas as pd
df = pd.read_csv('data.csv')
print(df.to_string())

to_string()

to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 … 代替。

# 实例 2
import pandas as pd
df = pd.read_csv('data.csv')
print(df)

to_csv()

我们也可以使用 to_csv() 方法将 DataFrame 存储为 csv 文件:

# 实例 3
import pandas as pd
# 三个字段 name, site, age
nme = ["Google", "Taobao", "Wiki"]
st = ["www.google.com", "www.taobao.com", "www.wikipedia.org"]
ag = [90, 80, 98]
# 字典
dict = {'name': nme, 'site': st, 'age': ag}    
df = pd.DataFrame(dict)
# 保存 dataframe
df.to_csv('site.csv')

数据处理

head()

head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行。

# 实例 5 
import pandas as pd
df = pd.read_csv('data.csv')
# 读取前面 5 行
print(df.head())

注意,head()默认返回的是前5行,如果你想改变默认行数,你可以通过head()函数中的参数n进行设置。此外,你需要首先导入pandas库并读取csv文件到DataFrame对象。

# 实例 6
import pandas as pd
df = pd.read_csv('data.csv')
# 读取前面 10 行
print(df.head(10))

tail()

tail( n ) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN。如果指定参数n,则返回最后n行。如果n大于DataFrame的行数,则返回全部的行。

# 实例 7
import pandas as pd
df = pd.read_csv('data.csv')
# 读取末尾 5 行
print(df.tail())

注意,实例中,已经正确使用了tail()方法来读取’data.csv’文件的最后5行。如果文件有足够的行数,那么tail()方法会返回最后5行数据。如果文件不足够长,那么返回的行数将与文件的实际行数相同。
另外,对于空行,Pandas将其各个字段的值返回NaN。如果你希望将空行视为具有特定值(例如0或’')的行,你可以使用fillna()方法来填充缺失值。

fillna()

# 实例 8
import pandas as pd
df = pd.read_csv('data.csv')
# 将空行填充为0
print(df.tail().fillna(0))

读取末尾 10 行也是一样的

# 实例 9
import pandas as pd
df = pd.read_csv('data.csv')
# 读取末尾 10 行
print(df.tail(10).fillna(0))

info()

info()方法在Pandas库中主要用于输出DataFrame的相关信息。这包括行数、列数、非空值的数量以及每列的数据类型等。

当你在一个DataFrame对象上调用info()方法时,它会输出以下信息:

  1. DataFrame的索引(行标签)的详细信息,包括最小值、最大值、唯一值和步长。
  2. DataFrame的列标签及其一些统计信息,包括数据类型、非空值的数量等。
  3. DataFrame的行数和列数。
# 实例 10
import pandas as pd
df = pd.read_csv('data.csv')
print(df.info())

当你运行上述代码时,info()方法将输出类似以下的信息(具体内容取决于你的数据)举个例子如下:

<class 'pandas.core.frame.DataFrame'>  
RangeIndex: 500 entries, 0 to 499  	 		# 行数,500 行,第一行编号为 0
Data columns (total 13 columns): 			# 列数,13列
#   Column  Non-Null Count  Dtype   		# 各列的数据类型
---  ------  --------------  -----    
0   team    500 non-null    object  		# non-null,意思为非空的数据 
1   player  483 non-null    object  
2   pos     483 non-null    object  
3   age     483 non-null    float64  
4   height   483 non-null    float64  
...  
11  mp_mp   500 non-null    float64  
12  mp40     500 non-null    float64  
13  mp40g    498 non-null    float64  
dtypes: float64(7), int64(2), object(4)  	# 类型
memory usage: 49.3 KB

这个输出说明了:

  • DataFrame的类别(在这个例子中是一个pandas DataFrame)和索引范围。
  • DataFrame的列数和非空值的数量。
  • 每列的非空值数量和数据类型。
  • 每列的缺失值数量(如果有的话)。
  • DataFrame使用的内存量。

后记

今天学习的是Python Pandas DataFrame学会了吗。 今天学习内容总结一下:

  1. Pandas CSV 文件
  2. read_csv()
  3. to_string()
  4. to_csv()
  5. 数据处理
  6. head()
  7. tail()
  8. info()
http://www.yayakq.cn/news/900536/

相关文章:

  • 建站工作室wordpress小工具滑至顶部
  • 泰州网站建设托管海淀西北旺网站建设
  • Divi WordPress企业建站主题网站建设工具开源
  • 网站平台推广方案港海建设网站
  • 广西网站建设营销公司公司黄页怎么查
  • 网站设计论文3000字可以做微信推文的网站
  • 如何做网站制作大连开发区网站制作建设公司
  • 建设工程中标查询网站吉林大学建设工程学院网站
  • 网站上有声的文章是怎么做的线上推广平台都有哪些
  • 四川省建设厅建造师官方网站现在最好的营销方式
  • 美容养生连锁东莞网站建设有没有做网站的软件
  • 无限流量网站建设哪家建公司网站
  • 做网站需要的导航室内设计公司的运营模式
  • 如何做网站霸屏成都注册公司的流程及手续
  • 做蛋糕招聘网站具备网站维护与建设能力
  • 怎么自己做H5网站南京的网站建设
  • 河南专业的做网站的公司wordpress p 收录
  • 网站开发女生wordpress看不到图片
  • 用阿里云做网站网站维护服务基本内容
  • 广州哪个公司做网站好吉林网络推广公司
  • 网站收录低的原因什么做网站的公司好
  • 怎样建设手机网站安徽住房和建设网站
  • 丽江市网站建设制作哪个网站做任务可以赚钱
  • 温州市建设小学大南网站贵州遵义新闻
  • 郑州建站wordpress获取五条数据
  • 网站后台登录怎么做的wordpress底部导航代码
  • 免费情感网站哪个好网站开发工程师待遇
  • 深圳网站建设软件开发公司排名网页设计学校哪个好
  • WordPress模板资源下载站网站开发之美
  • 泉州网站制作专业国际重大新闻事件2023