当前位置: 首页 > news >正文

网站资源规划怎么写地方购物网站盈利模式

网站资源规划怎么写,地方购物网站盈利模式,织梦响应式茶叶网站,网站开发数据库连接失败🤵‍♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (一)
作者: 计算机魔术师
版本: 1.0 ( 2023.8.27 )

摘要: 本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

@toc

置信区域概念

置信区域(Confidence Interval)是统计学中的一个概念,用于估计总体参数的取值范围。它是对样本统计量的点估计结果进行区间估计的一种方法。

在统计推断中,我们通常只能通过抽样得到一部分数据,然后利用这部分数据对总体参数进行估计。然而,由于抽样误差等因素的存在,样本估计值往往不会完全等于总体参数的真实值。因此,为了提供关于总体参数的估计范围,我们使用置信区域来表示参数可能的取值范围

置信区域由估计值的下限和上限组成,表示我们对总体参数的估计具有一定的置信水平(confidence level)。常见的置信水平包括95%、90%等。例如,一个95%的置信区域表示,在大量重复抽样的情况下,有95%的置信区间会包含总体参数的真实值。

置信区域的计算通常依赖于抽样分布的性质和统计理论。常见的计算方法包括基于正态分布的方法、基于t分布的方法等。计算得到的置信区域可以帮助我们对估计结果的可靠性进行评估,并提供了关于总体参数的不确定性信息。

需要注意的是,置信区域并不直接提供关于总体参数真实值的准确区间,而是提供了一个统计上的估计范围。置信区域的宽度与置信水平有关,较宽的置信区域表示对估计结果的不确定性较大,较窄的置信区域表示对估计结果的不确定性较小。

独立同分布概念

独立同分布(independent and identically distributed,简称i.i.d.)是概率统计学中的一个重要概念。

独立(independent)指的是随机变量之间的关系,即一个随机变量的取值不受其他随机变量的取值影响。换句话说,给定一个随机变量的取值,不能提供有关其他随机变量取值的任何信息。例如,抛一枚硬币两次,第一次出现正面和第二次出现正面这两个事件是独立的,因为第一次出现正面的结果不会影响第二次出现正面的概率。

同分布(identically distributed)指的是多个随机变量具有相同的概率分布。换句话说,多个随机变量的取值遵循相同的概率规律。例如,从同一批产品中随机选取多个产品的重量,这些随机变量的取值遵循相同的概率分布。

因此,独立同分布(i.i.d.)的含义是指多个随机变量之间相互独立且具有相同的概率分布。在统计学和机器学习中,独立同分布假设常常被用来简化问题和建立模型。它是许多概率模型和统计推断方法的基础假设之一,使得问题可以更容易地建模和求解。

P-value假设检验

在统计学中,p-value中的"P"代表"probability",即概率。p-value表示观察到的样本数据或更极端情况出现的概率。

在假设检验中,p-value是用于衡量观察到的样本数据对于原假设的支持程度的指标。它表示在原假设为真的情况下,观察到的样本数据或更极端情况出现的概率。

假设检验的一般步骤如下:

  1. 建立原假设(H0)和备择假设(H1)。
  2. 选择适当的统计量,根据样本数据计算统计量的观察值。
  3. 基于原假设,确定统计量在原假设下的分布。
  4. 计算p-value,即在原假设为真的情况下,观察到的统计量值或更极端情况出现的概率。
  5. 根据p-value与事先设定的显著性水平进行比较。
    • 如果p-value小于显著性水平(通常为0.05),则拒绝原假设,认为观察到的数据提供了足够的证据支持备择假设。
    • 如果p-value大于等于显著性水平,则无法拒绝原假设,认为观察到的数据不足以提供足够的证据支持备择假设。

p-value的计算方法与具体的假设检验方法和统计量有关。对于一些常见的假设检验方法,例如t检验和F检验,p-value可以通过查表或使用概率分布函数来计算。对于更复杂的假设检验方法,可能需要使用模拟方法(如蒙特卡洛模拟)或基于抽样分布的方法来估计p-value。

需要注意的是,p-value并不提供关于备择假设的真实性或效应大小的信息。它仅仅是一种衡量观察到数据与原假设的一致性的指标。因此,在解释p-value时,应该谨慎考虑其他因素,如实际背景知识、样本大小和效应大小等。

显著性水平(0.05)

显著性水平通常被设定为0.05(或5%)的原因是出于统计学上的传统和惯例。在假设检验中,显著性水平表示在原假设为真的情况下,我们拒绝原假设的错误概率。换句话说,它是我们犯第一类错误(拒绝一个实际上为真的假设)的概率。

将显著性水平设置为0.05有以下几个原因:

  1. 常用的标准:0.05的显著性水平是在许多学科和领域中被广泛接受的标准,包括经济学、社会科学、医学研究等。这种一致性有助于结果的可比性和解释的一致性。

  2. 平衡类型I和类型II错误:在假设检验中,存在两种类型的错误,即类型I错误(拒绝一个实际上为真的假设)和类型II错误(接受一个实际上为假的假设)。将显著性水平设置为0.05可以在一定程度上平衡这两种错误的风险。

  3. 统计学的权衡:选择显著性水平时需要进行统计学权衡。较低的显著性水平(例如0.01)可以降低犯类型I错误的概率,但可能增加类型II错误的概率。相反,较高的显著性水平(例如0.10)可以增加类型I错误的概率,但可能降低类型II错误的概率。0.05的显著性水平在权衡这两种错误之间提供了一种较为平衡的选择。

需要注意的是,显著性水平的选择并不是绝对的,而是依赖于具体的研究领域、问题的重要性以及研究者自身的偏好。在某些情况下,可能会选择更为保守或更为宽松的显著性水平。

将显著性水平设置为0.05是出于统计学的传统和平衡类型I和类型II错误的考虑。然而,根据具体的研究需求和背景,研究者可以根据自己的判断和需要选择不同的显著性水平。
在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳
http://www.yayakq.cn/news/935542/

相关文章:

  • 哪个市文化和旅游网站做的好网站建设 整改报告
  • asp.net获取网站地址石家庄行业网站
  • 网站建设素材图片wordpress 主题配置
  • 韶关网站建设的公司做网站首页图片
  • 建设旅游网站的市场分析做宠物的网站
  • 穹拓网站建设免费建站的软件
  • vue大型网站开发吗域名网安备案
  • 国外做珠宝裸石的网站广西桂林自驾游最佳线路推荐
  • ui做的好的网站有哪些内容多功能响应式wordpress主题
  • 网站建设项目标书胜利油田局域网主页入口
  • 先进网站建设流程crm
  • 莆田市住房和城乡建设信息网aso优化推广
  • wordpress外贸建站教程专业竞价托管哪家好
  • 创立一个网站得多少钱室内设计效果图分析
  • 国家和住房城乡建设部网站北京网站建设那家好
  • 广西建设厅网站地址wordpress站点标题添加
  • 做网站还有用集团网站 wordpress
  • 室内设计师第一网站永久个人网站
  • 咨询聊城网站建设北京西站列车时刻表
  • 鹤壁网站推广公司网站建设时间推进表模板
  • 小说网站建设方案酷炫 网站模板
  • 嘉祥县建设局官方网站做网站与全网营销搜索推广排名优化
  • 建设厅网站初始数据入库做拼团的网站
  • 网站seo优化技术入门163网易邮箱
  • 怎么提高网站的权重网站公司成本
  • 做会员系统的网站用什么cms好微信官网开发
  • 怎么做彩票网站网站建设 大公司好
  • 宁波企业网站建设游戏推广工作怎么样
  • 请人做网站收费多少钱wordpress评论可见插件
  • 郑州制作网站设计外包公司属于什么行业