当前位置: 首页 > news >正文

陕西哪些公司做企业网站网络营销推广及优化方案

陕西哪些公司做企业网站,网络营销推广及优化方案,wordpress小游戏,网站开发平台及常用开发工具前言 接上午的那一篇,下午我们学习剩下的RDD编程,RDD操作中的剩下的转换操作和行动操作,最好把剩下的RDD编程都学完。 Spark【RDD编程(一)RDD编程基础】 RDD 转换操作 6、distinct 对 RDD 集合内部的元素进行去重…

前言

接上午的那一篇,下午我们学习剩下的RDD编程,RDD操作中的剩下的转换操作和行动操作,最好把剩下的RDD编程都学完。

Spark【RDD编程(一)RDD编程基础】

RDD 转换操作

6、distinct

对 RDD 集合内部的元素进行去重,然后把去重后的其他元素放到一个新的 RDD 集合内。

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object RDDTransForm {def main(args: Array[String]): Unit = {// 创建SparkContext对象val conf = new SparkConf()conf.setAppName("spark core rdd transform").setMaster("local")val sc = new SparkContext(conf)// 通过并行集合创建RDD对象val arr = Array("Spark","Flink","Spark","Storm")val rdd1: RDD[String] = sc.parallelize(arr)val rdd2: RDD[String] = rdd1.distinct()rdd2.foreach(println)//关闭SparkContextsc.stop()}
}

运行输出:

Flink
Spark
Storm

可以看到,重复的元素"Spark"被去除掉。 

7、union

对 两个 RDD 集合进行并集运算,并返回新的 RDD集合,虽然是并集运算,但整个过程不会把重复的元素去除掉。
// 通过并行集合创建RDD对象val arr1 = Array("Spark","Flink","Storm")val arr2 = Array("Spark","Flink","Hadoop")val rdd1: RDD[String] = sc.parallelize(arr1)val rdd2: RDD[String] = sc.parallelize(arr2)val rdd3: RDD[String] = rdd1.union(rdd2)rdd3.foreach(println)

运行结果:

Spark
Flink
Storm
Spark
Flink
Hadoop
可以看到,重复的元素"Spark"和"Flink"没有被去除。

8、intersection

对两个RDD 集合进行交集运算。

// 通过并行集合创建RDD对象val arr1 = Array("Spark","Flink","Storm")val arr2 = Array("Spark","Flink","Hadoop")val rdd1: RDD[String] = sc.parallelize(arr1)val rdd2: RDD[String] = sc.parallelize(arr2)val rdd3: RDD[String] = rdd1.intersection(rdd2)rdd3.foreach(println)

运行结果:

Spark
Flink

"Spark"和"Flink"是两个RDD集合都有的。 

9、subtract

对两个RDD 集合进行差集运算,并返回新的RDD 集合。

rdd1.substract(rdd2) 返回的是 rdd1有而rdd2中没有的元素,并不会把rdd2中有rdd1中没有的元素也包进来。

// 通过并行集合创建RDD对象val arr1 = Array("Spark","Flink","Storm")val arr2 = Array("Spark","Flink","Hadoop")val rdd1: RDD[String] = sc.parallelize(arr1)val rdd2: RDD[String] = sc.parallelize(arr2)val rdd3: RDD[String] = rdd1.subtract(rdd2)rdd3.foreach(println)

运算结果:

Storm

"Storm"是rdd1中有的二rdd2中没有的,并不会返回"Hadoop"。 

10、zip

把两个 RDD 集合中的元素以键值对的形式进行合并,所以需要确保两个RDD 集合的元素个数必须是相同的。

// 通过并行集合创建RDD对象val arr1 = Array("Spark","Flink","Storm")val arr2 = Array(1,3,5)val rdd1: RDD[String] = sc.parallelize(arr1)val rdd2: RDD[Int] = sc.parallelize(arr2)val rdd3: RDD[(String,Int)] = rdd1.zip(rdd2)rdd3.foreach(println)

运行结果:

(Spark,1)
(Flink,3)
(Storm,5)

RDD 行动操作

RDD 的行动操作是真正触发计算的操作,计算过程十分简单。

1、count

返回 RDD 集合中的元素数量。

2、collect

以数组的形式返回 RDD 集合中所有元素。

3、first

返回 RDD 集合中的第一个元素。

4、take(n)

返回 RDD 集合中前n个元素。

5、reduce(func)

以规则函数func对RDD集合中的元素进行循环处理,比如将所有元素加到一起或乘起来。

6、foreach

对RDD 集合进行遍历,输出RDD集合中所有元素。

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object RDDAction {def main(args: Array[String]): Unit = {// 创建SparkContext对象val conf = new SparkConf()conf.setAppName("spark core rdd transform").setMaster("local")val sc = new SparkContext(conf)//通过并行集合创建 RDD 对象val arr: Array[Int] = Array(1,2,3,4,5)val rdd: RDD[Int] = sc.parallelize(arr)val size: Long = rdd.count()val nums: Array[Int] = rdd.collect()val value: Int = rdd.first()val res: Array[Int] = rdd.take(3)val sum: Int = rdd.reduce((v1, v2) => v1 + v2)println("size = " + size)println("The all elements are ")nums.foreach(println)println("The first element in rdd is " + value)println("The first three elements are ")res.foreach(println)println("sum is " + sum)rdd.foreach(print)//关闭SparkContextsc.stop()}}

运行结果:

size = 5
The all elements are 
1
2
3
4
5
The first element in rdd is 1
The first three elements are 
1
2
3
sum is 15
12345
Process finished with exit code 0

文本长度计算案例

计算 data 目录下的文件字节数(文本总长度)。

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object FileLength {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("spark core rdd transform").setMaster("local")val sc = new SparkContext(conf)val rdd1: RDD[String] = sc.textFile("data")val rdd2: RDD[Int] = rdd1.map(line => line.length)val fileLength: Int = rdd2.reduce((len1, len2) => len1 + len2)println("File length is " + fileLength)sc.stop()}
}

持久化

在Spark 中,RDD采用惰性机制,每次遇到行动操作,就会从头到尾开始执行计算,这对于迭代计算代价是很大的,因为迭代计算经常需要多次重复使用相同的一组数据。

  • 使用cache() 方法将需要持久化的RDD对象持久化进缓存中
  • 使用unpersist() 方法将持久化rdd从缓存中释放出来
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object RDDCache {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("spark core rdd transform").setMaster("local")val sc = new SparkContext(conf)val list = List("Hadoop","Spark","Hive","Flink")val rdd: RDD[String] = sc.parallelize(list)rdd.cache()println(rdd.count())  //第一次行动操作println(rdd.collect.mkString(",")) //第二次行动操作rdd.unpersist() //把这个持久化的rdd从缓存中移除,释放内存空间sc.stop()}
}

分区

分区的作用

        RDD 是弹性分布式数据集,通过 RDD 都很大,会被分成多个分区,分别保存在不同的节点上。进行分区的好处:  

  1. 增加并行度。一个RDD不分区直接进行计算的话,不能充分利用分布式集群的计算优势;如果对RDD集合进行分区,由于一个文件保存在分布式系统中不同的机器节点上,可以就近利用本分区的机器进行计算,从而实现多个分区多节点同时计算,并行度更高。
  2. 减少通信开销。通过数据分区,对于一些特定的操作(如join、reduceByKey、groupByKey、leftOuterJoin等),可以大幅度降低网络传输。

分区的原则

        使分区数量尽量等于集群中CPU核心数目。可以通过设置配置文件中的 spark.default.parallelism 这个参数的值,来配置默认的分区数目。

设置分区的个数 

1、创建 RDD对象时指定分区的数量

1.1、通过本地文件系统或HDFS加载

sc.textFile(path,partitionNum)

1.2、通过并行集合加载 

 对于通过并行集合来创建的RDD 对象,如果没有在参数中指定分区数量,默认分区数目为 min(defaultParallelism,2) ,其中defaultParallelism就是配置文件中的spark.default.parallelism。如果是从HDFS中读取文件,则分区数目为文件分片的数目。

2、使用repartition()方法重新设置分区个数

val rdd2 = rdd1.repartition(1)    //重新设置分区为1

自定义分区函数

继承 org.apache.spark.Partitioner 这个类,并实现下面3个方法:

  1. numPartitions: Int ,用于返回创建出来的分区数。
  2. getPartition(key: Any),用于返回给定键的分区编号(0~paratitionNum-1)。
  3. equals(),Java中判断相等想的标准方法。

注意:Spark 的分区函数针对的是(key,value)类型的RDD,也就是说,RDD中的每个元素都是(key,value)类型的,然后函数根据 key 对RDD 元素进行分区。所以,当要对一些非(key,value)类型的 RDD 进行自定义分区时,需要首先把 RDD 元素转换为(key,value)类型,然后再使用分区函数。

案例

将奇数和偶数分开写到不同的文件中去。

import org.apache.spark.rdd.RDD
import org.apache.spark.{Partitioner, SparkConf, SparkContext}class MyPartitioner(numParts: Int = 2) extends Partitioner{//覆盖默认的分区数目override def numPartitions: Int = numParts//覆盖默认的分区规则override def getPartition(key: Any): Int = {if (key.toString.toInt%2==0) 1 else 0}
}
object MyPartitioner{def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("partitioner").setMaster("local")val sc: SparkContext = new SparkContext(conf)val data: Array[Int] = (1 to 100).toArrayval rdd: RDD[Int] = sc.parallelize(data,5)val savePath:String = System.getProperty("user.dir")+"/data/rdd/out"rdd.map((_,1)).partitionBy(new MyPartitioner()).map(_._1).saveAsTextFile(savePath)sc.stop()}
}

我们在代码中创建RDD 对象的时候,我们指定了分区默认的数量为 5,然后我们使用我们自定义的分区,观察会不会覆盖掉默认的分区数量: 

运行结果:

我们可以看到,除了校验文件,一共生成了两个文件,其中一个保存了1~100的所有奇数,一个保存了1~100的所有偶数; 

综合案例

在上一篇博客中,我们已经做过WordCount了,但是明显篇幅比较长,这里我们简化后只需要两行代码:

    //使用本地文件作为数据加载创建RDD 对象val rdd: RDD[String] = sc.textFile("data/word.txt")//RDD("Hadoop is good","Spark is better","Spark is fast")val res_rdd: RDD[(String,Int)] = rdd.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)//flatMap://RDD(Array("Hadoop is good"),Array("Spark is better"),Array("Spark is fast"))//RDD("Hadoop","is",good","Spark","is","better","Spark","is","fast"))

运行结果:

(Spark,2)
(is,3)
(fast,1)
(good,1)
(better,1)
(Hadoop,1)

总结

至此,我们RDD基础编程部分就结束了,但是RDD编程还没有结束,接下来我会继续学习键值对RDD、数据读写,最后总结性低做一个大的综合案例。

http://www.yayakq.cn/news/955636/

相关文章:

  • 刚做的网站关键字能搜到么如何自己做淘宝客网站
  • 城市建设招标网站网站群管理平台方案
  • 如何做域名网站网站炫酷首页
  • 怎么自己做网站游戏连云港做网站多少钱
  • 广西营销型网站公司c2c交易平台官网
  • 做淘宝联盟网站用数据库吗英文网站建设公司
  • 笑话小网站模板html抖音代运营公司布马网络
  • 360做的网站东阳市建设规划局网站
  • 网站建设与管理期末网站建设项目分期
  • 仓库管理系统er图网站优化做些什么
  • 安丘网站建设开发优秀设计网站大全
  • 江门建站软件语言网站开发
  • 郑州营销型网站建设哪家好淘宝运营培训内容
  • 网站建设与制作石家庄企查猫
  • php网站超市app软件制作公司排名
  • 广东网站建设排名东莞网站搭建哪家强
  • 郑州文明网seo推广系统排名榜
  • 网站能不能用自己的电脑做服务器做soho外贸网站
  • 舆情网站直接打开最好最值得做的调查网站
  • 怎么去建一个网站请人做网站要多少
  • 网站建站建设成都专业网站设计好公司
  • 做期货看什么网站wordpress企业站主题下载地址
  • 网站开发推广方案策划书要加强县门户网站的建设管理
  • 简述如何让网站排名快速提升ug.wordpress.org
  • 有什么网站可以免费看电影高端网站设计公司新鸿儒
  • 简单设计网站如何自己做个人微信小程序
  • 微信h5商城网站开发小规模公司简介怎么写
  • 平面设计网站排行榜都江堰seo
  • 网站开发主机的选择汕头市做网站优化
  • 东阳市建设局网站短网址生成算法