当前位置: 首页 > news >正文

网站建设 软件开发的公司排名软件 开发公司

网站建设 软件开发的公司排名,软件 开发公司,wordpress 403,广东建设职业技术学院网站yolov11官方框架:https://github.com/ultralytics/ultralytics 【算法介绍】 在C中使用纯OpenCV部署YOLOv11进行目标检测是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTor…

yolov11官方框架:https://github.com/ultralytics/ultralytics

【算法介绍】

在C++中使用纯OpenCV部署YOLOv11进行目标检测是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

以下是一个大致的步骤指南,用于在C++中使用OpenCV部署YOLOv11(假设你已经有了YOLOv11的ONNX模型):

  1. 安装依赖
    • 确保你的开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。
  2. 准备模型
    • 将YOLOv11模型从PyTorch转换为ONNX格式。这通常涉及使用PyTorch的torch.onnx.export函数。
    • 确保你有YOLOv11的ONNX模型文件、配置文件(描述模型架构)和类别名称文件。
  3. 编写C++代码
    • 使用OpenCV的DNN模块加载ONNX模型。
    • 预处理输入图像(如调整大小、归一化等),以符合模型的输入要求。
    • 将预处理后的图像输入到模型中,并获取检测结果。
    • 对检测结果进行后处理,包括解析输出、应用非极大值抑制(NMS)和绘制边界框。
  4. 编译和运行
    • 使用C++编译器(如g++)编译你的代码。
    • 运行编译后的程序,输入图像或视频,并观察目标检测结果。

需要注意的是,由于YOLOv11是一个复杂的模型,其输出可能包含多个层的信息(如特征图、置信度、边界框坐标等),因此你需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。

此外,由于OpenCV的DNN模块对ONNX的支持可能有限,某些YOLOv11的特性(如自定义层、特定的激活函数等)可能无法在OpenCV中直接实现。在这种情况下,你可能需要寻找替代方案,如使用其他深度学习库(如TensorRT、ONNX Runtime等)来加载和运行模型,并通过C++接口与这些库进行交互。

总之,在C++中使用纯OpenCV部署YOLOv11是一项具有挑战性的任务,需要深入理解YOLOv11的模型架构、OpenCV的DNN模块以及ONNX格式。如果你不熟悉这些领域,可能需要花费更多的时间和精力来学习和解决问题。

【效果展示】

【测试环境】

vs2019
cmake==3.24.3
opencv==4.8.0

【部分实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov11.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.using namespace std;
using namespace cv;
using namespace dnn;template<typename _Tp>
int yolov11(_Tp& cls,Mat& img,string& model_path)
{Net net;if (cls.ReadModel(net, model_path, false)) {cout << "read net ok!" << endl;}else {return -1;}//生成随机颜色vector<Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(Scalar(b, g, r));}vector<OutputSeg> result;if (cls.Detect(img, net, result)) {DrawPred(img, result, cls._className, color);}else {cout << "Detect Failed!" << endl;}system("pause");return 0;
}template<typename _Tp>
int video_demo(_Tp& cls, string& model_path)
{vector<Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(Scalar(b, g, r));}vector<OutputSeg> result;cv::VideoCapture cap("D:\\car.mp4");if (!cap.isOpened()){std::cout << "open capture failured!" << std::endl;return -1;}Mat frame;
#ifdef VIDEO_OPENCVNet net;if (cls.ReadModel(net, model_path, true)) {cout << "read net ok!" << endl;}else {cout << "read net failured!" << endl;return -1;}#elseif (cls.ReadModel(model_path, true)) {cout << "read net ok!" << endl;}else {cout << "read net failured!" << endl;return -1;}#endifwhile (true){cap.read(frame);if (frame.empty()){std::cout << "read to end" << std::endl;break;}result.clear();
#ifdef VIDEO_OPENCVif (cls.Detect(frame, net, result)) {DrawPred(frame, result, cls._className, color, true);}
#elseif (cls.OnnxDetect(frame, result)) {DrawPred(frame, result, cls._className, color, true);}
#endifint k = waitKey(10);if (k == 27) { //esc break;}}cap.release();system("pause");return 0;
}int main() {string detect_model_path = "./yolo11n.onnx";Yolov11 detector;video_demo(detector, detect_model_path);
}

【视频演示】

C++使用纯opencv部署yolov11目标检测onnx模型演示源码+模型_哔哩哔哩_bilibili【测试环境】vs2019cmake==3.24.3opencv==4.8.0更多实现细节和源码下载参考博文https://blog.csdn.net/FL1623863129/article/details/142688868, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,将yolov5-6.2封装成一个类几行代码完成语义分割任务,C++使用纯opencv去部署yolov8官方obb旋转框检测,使用C#的winform部署yolov8的onnx实例分割模型,超变态的AI换脸工具,解除限制!解锁高级功能!,YOLOv8检测界面-PyQt5实现,基于onnx模型加密与解密深度学习模型保护方法介绍,基于opencv封装易语言读写视频操作模块支持视频读取和写出,使用易语言调用opencv进行视频和摄像头每一帧处理,使用纯opencv部署yolov5目标检测模型onnxicon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1Nc4LekE1d/
【源码下载】

https://download.csdn.net/download/FL1623863129/89837170

http://www.yayakq.cn/news/903122/

相关文章:

  • 网站建设功能报价小程序设计软件
  • 移动终端网站建设vi系统整套设计
  • 学网站建设app恒丰建设集团有限公司 网站
  • 阿里云搭建公司网站六安建设厅网站
  • 做网站收获了什么wordpress绑定域名收费
  • 昌乐建设局网站wordpress跳转链接插件汉化
  • 南京网站制作系统樟树市建设局网站
  • 网站开发用什么语言最安全自己怎样做海外网站
  • 高端定制网站网站建设培训招生
  • 手机网站开发一个多少钱华为公司网站建设方案模板下载
  • 怎么在中国做网站网站网站建设主机
  • 有关学风建设网站大健康品牌策划公司
  • 漯河企业网站建设公司出口外贸交易平台
  • 网站改版目的科技龙头股一览表
  • 网站开发 价格差异手机网站分辨率做多大
  • 网站后台如何添加附件北京网站优化效果
  • 网站建设 金手指 排名22移动端开发需要什么技术
  • 如何提高网站点击量手机页面设计软件
  • 宁波建站模板厂家服务器上的网站怎么做301
  • 电商网站基本功能如何做品牌营销
  • 嘉兴地区有人做网站吗wordpress开发页面
  • 凡科建站联系电话广告传媒公司介绍
  • 深圳网站建设加q479185700做网站建设公司怎么选
  • 成都 商业网站建设浙江网商银行电话
  • 网站建设天乐大厦哪里可以学短视频运营
  • 做网站建设的销售怎么样甘肃省建设厅网站首页
  • 学什么可以做视频网站网络架构有哪几层
  • 网站制作编辑软件wordpress怎么换域名
  • 自己做网站都需要什么wordpress破解主题下载
  • 青岛建设集团网站网页的制作公司