当前位置: 首页 > news >正文

设计专业知名企业网站自己网站做优化的有权利卖么

设计专业知名企业网站,自己网站做优化的有权利卖么,百度网址导航,怎么做网站赚流量上一篇介绍了一个指数增长模型。然而,我们也看到,在现实情况下,细菌培养的增长是在离散的时间(在这种情况下是小时)进行测量的,种群并没有无限增长,而是趋于以S形曲线趋于平稳,称为“…

上一篇介绍了一个指数增长模型。然而,我们也看到,在现实情况下,细菌培养的增长是在离散的时间(在这种情况下是小时)进行测量的,种群并没有无限增长,而是趋于以S形曲线趋于平稳,称为“逻辑曲线”。

数学生物学-1-指数增长与衰退(Exponential Growth and Decay)-CSDN博客

这里发生的是,由于培养基中食物数量有限,细菌细胞由于竞争食物而生长减缓,因此,种群也开始以更慢的速度增长,越来越趋于稳定。


在本篇中,我们将提出一个描述这种增长的一般模型以及两个替代模型。 数学上,这个过程可以用所谓的“离散逻辑模型”来描述。这是一个类似于之前表达的方程式的形式:

其中r是繁殖率常数,K是模型的承载能力。如之前所示,指数增长模型在生物学上是不现实的,因为它显示了无限增长。正如我们将看到的,离散逻辑模型纳入了一个承载能力,防止了无限增长。带有N^2t的项代表了种群内的种内竞争

这其实可以表示为一个微分方程:

\frac{\mathrm{dN} }{\mathrm{d} t} = rN(1-\frac{N}{k})

我们假定r=1.5,N=100,使用R语言求解微分方程得:

# 加载所需的包
library(deSolve)# 定义逻辑斯蒂增长模型
logistic_growth <- function(time, state, parameters) {with(as.list(c(state, parameters)), {dN <- r * N * (1 - N/K)return(list(dN))})
}# 初始条件和参数
state <- c(N = 10) # 初始菌群数量
parameters <- c(r = 1.5, K = 100) # 增长率和承载能力# 时间向量
times <- seq(0, 50, by = 0.1)# 求解微分方程
out <- ode(y = state, times = times, func = logistic_growth, parms = parameters)# 绘制菌群增长曲线
library(ggplot2)
ggplot(data.frame(out), aes(x = time, y = N)) +geom_line() +labs(x = "Time", y = "Population Size", title = "Logistic Growth of Bacterial Population") +theme_minimal()

对离散逻辑函数的增强

我们应该注意到,离散逻辑方程的实现会遇到一个问题,即当N的值较大时,会给出一个负值。当然,也有其他形式的离散逻辑方程,如de Vries等人(2006)所建议的,可以解决这个问题。

方案一:Beverton-Holt模型

选项I 其中一个替代模型是所谓的Beverton-Holt模型(Beverton和Holt 1993;Geritz和Kisdi 2004),该模型是为渔业而推导出来的,用以下离散逻辑方程代替:

with r > 1 and (of course) K > 0. Note Nt+1 > 0 for all t.

方案二:Ricker模型

另一个模型是所谓的Ricker模型(Ricker 1954;Geritz和Kisdi 2004),也是为渔业而推导出来的,用以下离散逻辑方程代替:

with r > 1 and K > 0. Again, note that Nt+1 > 0 for all t.

我们分别可视化看一下:

library(ggplot2)# 参数设置
r <- 1.5
K <- 100
N <- seq(0, K, length.out = 100)# 离散逻辑模型(DLM)
g_DLM <- r * N * (1 - N/K)# Beverton-Holt模型(B-H)
g_BH <- N * (1 - N/K)^r# Ricker模型
g_Ricker <- N * exp(r * (1 - N/K))# 创建数据框
df <- data.frame(N = N, g_DLM = g_DLM, g_BH = g_BH, g_Ricker = g_Ricker)# 绘制图形
p <- ggplot(df, aes(x = N)) +geom_line(aes(y = g_DLM, color = "Discrete Logistic Model"), linewidth = 1) +geom_line(aes(y = g_BH, color = "Beverton-Holt Model"), linewidth = 1) +geom_line(aes(y = g_Ricker, color = "Ricker Model"), linewidth = 1) +scale_color_manual(name = "Model",values = c("Discrete Logistic Model" = "blue","Beverton-Holt Model" = "red","Ricker Model" = "green")) +labs(title = "Growth Functions for Discrete Models",x = "Population Size (N)",y = "Growth Rate",caption = "r = 1.5, K = 100") +theme_minimal() +theme(text = element_text(size = 12),plot.caption = element_text(hjust = 0.95))# 显示图形
print(p)

或者可以可视化为:

这三种模型都可以用一个生长函数来表达,形式如下:

如果我们观察生长函数 g(N) 依赖于 N 的方式,我们可以看到离散逻辑模型导致 Nt+1 为负的问题是如何产生的,而对于 Beverton-Holt 和 Ricker 模型则不会。请注意,图中所有三个函数都在 N = K(此图中为 100)处相交,此时生长函数等于 1.0。

总结

离散逻辑模型通过引入一个承载能力来解决第章中提出的简单指数增长模型的问题,该承载能力防止种群无限增长。另一方面,离散逻辑模型有一个弱点,即当 N 的值足够大时,下一个计算出的种群大小将为负。Beverton-Holt 和 Ricker 等替代模型通过使用不会变为负数的生长函数来解决这个弱点。

http://www.yayakq.cn/news/224006/

相关文章:

  • 会展门户网站源码icp网站授权函
  • 电子商务网站建设的答案凡科建站怎么建网站
  • 网站设计价格大概是wordpress侧边栏代码
  • 建云购网站贵阳app定制开发
  • 郴州网站建设公司哪个好无极在线最新招聘信息兼职
  • 留学网站建设南京外贸网站建设公司排名
  • 南宁百度网站公司没有网站也可以做cpa
  • 小公司做网站赚钱网站建设维护工作总结
  • 关于房产的网站有哪些水产养殖畜禽饲料类网站前端模板
  • wordpress的数据库配置文件seo做多个网站
  • 网站开发的收获与体会网站怎么做支付宝接口
  • jsp网站开发之html入门知识wordpress产品图片
  • app公司网站模板建设网站如何赢利
  • 网站百度抓取怎么创建自己的博客网站
  • 大连哪家公司做网站好网址怎么弄
  • 安徽网站建设方案优化网站建设的基本技术步骤
  • 做网站找个人如何让网站做网页适配
  • 潍坊网站建设seo镇江网红景点
  • 网站建设方案 filetype doc西宁网站建设公司排行
  • 驻马店网站制作湖南省建一公司官网
  • 百度提交网站已删内容网站开发环境选择
  • 中介网站制度建设中国石油工程建设协会网站
  • 导师让做网站莱州市招聘网站
  • 浏览器网站进入口wordpress编辑图片不显示
  • 建设部网站 信用诚信评分标准泉州商城网站开发设计
  • 做群头像的网站在线制作百度运营培训班
  • 朱子网站建设兴城泳装电子商务网站建设
  • 建设银行官网站下载亳州市建设工程质量监督站网站
  • 江苏seo推广网站建设上海网站营销是什么
  • 网站权限配置客户关系管理软件有哪些