当前位置: 首页 > news >正文

漯河网站建设价格wordpress阅读量修改

漯河网站建设价格,wordpress阅读量修改,安卓和网站开发找工作,html网页设计框架基础原理讲解 应用路径 卷积网络最经典的就是CNN,其 可以提取图片中的有效信息,而生活中存在大量拓扑结构的数据。图卷积网络主要特点就是在于其输入数据是图结构数据,即 G ( V , E ) G(V,E) G(V,E),其中V是节点,E是…

基础原理讲解

应用路径

卷积网络最经典的就是CNN,其 可以提取图片中的有效信息,而生活中存在大量拓扑结构的数据。图卷积网络主要特点就是在于其输入数据是图结构数据,即 G ( V , E ) G(V,E) G(V,E),其中V是节点,E是边,能有效提取拓扑结构中的有效信息,实现节点分类,边预测等。

基础原理

其核心公式是:
H ( l + 1 ) = σ ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 H l W l ) H^{(l+1)}=\sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{l}W^l) H(l+1)=σ(D~1/2A~D~1/2HlWl)
其中:

  • σ \sigma σ 是非线性激活函数
  • D ~ \tilde{D} D~是度矩阵, D ~ i i = ∑ j A ~ i j \tilde{D}_{ii}=\sum_j\tilde{A}_{ij} D~ii=jA~ij
  • A ~ \tilde{A} A~是加了自环的邻接矩阵,通常表示为 A + I A+I A+I A A A是原始邻接矩阵, I I I是单位矩阵
  • H l H^l Hl是第 l l l层的节点特征矩阵, H l + 1 H^{l+1} Hl+1是第 l + 1 l+1 l+1层的节点特征矩阵
  • W l W^l Wl是第 l l l层的学习权重矩阵

步骤讲解:
1、邻接矩阵归一化: 将邻接矩阵归一化,使得邻居节点特征对中心节点特征的贡献相等。
2、特征聚合: 通过邻接矩阵与节点特征矩阵相乘,实现邻居特征聚合。
3、线性变换: 通过可学习的权重矩阵对聚合后的特征进行线性变换。

加自环的邻接矩阵

A ~ = A + λ I \tilde{A} = A+\lambda I A~=A+λI
邻接矩阵加上一个单位矩阵, λ \lambda λ是一个可以训练的参数,但也可直接取1。加自环 是为了增强节点自我特征表示,这样在进行图卷积操作时,节点不仅会聚合来自邻居节点的特征,还会聚合自己的特征。

图卷积操作

图像卷积和图卷积
图片的卷积是一个一个卷积核,在图片上滑动着做卷积。图的卷积就是自己加邻居一起做加和。
即:
A ~ X \tilde{A}X A~X

度矩阵求解

D ~ i i = ∑ j A ~ i j \tilde{D}_{ii}=\sum_j\tilde{A}_{ij} D~ii=jA~ij
度矩阵的求解

标准化

在进行加和时,节点的度不同,有存在较高度值的节点和较低度值的节点,这可能导致梯度爆炸梯度消失的问题。
根据度矩阵,求逆,然后 D ~ − 1 A ~ D ~ − 1 X \tilde{D}^{-1}\tilde{A} \tilde{D}^{-1}X D~1A~D~1X,就进行了标准化,前一个 D ~ − 1 \tilde{D}^{-1} D~1是对行进行标准化,后一个 D ~ − 1 \tilde{D}^{-1} D~1是对列进行标准化。能够实现给与低度节点更大的权重,从而降低高节点的影响。
在上式推导中, D ~ − 1 A ~ D ~ − 1 X \tilde{D}^{-1}\tilde{A} \tilde{D}^{-1}X D~1A~D~1X 做了两次标准化,所以修改上式为 D ~ − 1 / 2 A ~ D ~ − 1 / 2 X \tilde{D}^{-1/2}\tilde{A} \tilde{D}^{-1/2}X D~1/2A~D~1/2X

简单python实现

基于cora数据集实现节点分类

  • cora数据集处理
# cora数据集测试
raw_data = pd.read_csv('./data/data/cora/cora.content', sep='\t', header=None)
print("content shape: ", raw_data.shape)raw_data_cites = pd.read_csv('./data/data/cora/cora.cites', sep='\t', header=None)
print("cites shape: ", raw_data_cites.shape)features = raw_data.iloc[:,1:-1]
print("features shape: ", features.shape)# one-hot encoding
labels = pd.get_dummies(raw_data[1434])
print("\n----head(3) one-hot label----")
print(labels.head(3))
l_ = np.array([0,1,2,3,4,5,6])
lab = []
for i in range(labels.shape[0]):lab.append(l_[labels.loc[i,:].values.astype(bool)][0])
#构建邻接矩阵
num_nodes = raw_data.shape[0]# 将节点重新编号为[0, 2707]
new_id = list(raw_data.index)
id = list(raw_data[0])
c = zip(id, new_id)
map = dict(c)# 根据节点个数定义矩阵维度
matrix = np.zeros((num_nodes,num_nodes))# 根据边构建矩阵
for i ,j in zip(raw_data_cites[0],raw_data_cites[1]):x = map[i] ; y = map[j]matrix[x][y] = matrix[y][x] = 1   # 无向图:有引用关系的样本点之间取1# 查看邻接矩阵的元素
print(matrix.shape)
  • GCN网络实现
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {device}')
class GCNLayer(nn.Module):def __init__(self, in_features, out_features):super(GCNLayer, self).__init__()self.linear = nn.Linear(in_features, out_features)def forward(self, x, adj):rowsum = torch.sum(adj,dim=1)d_inv_sqrt = torch.pow(rowsum,-0.5)d_inv_sqrt[torch.isinf(d_inv_sqrt)] =0.0d_mat_inv_sqrt = torch.diag(d_inv_sqrt)adj_normalized = torch.mm(torch.mm(d_mat_inv_sqrt,adj),d_mat_inv_sqrt)out = torch.mm(adj_normalized,x)out = self.linear(out)return out
class GCN(nn.Module):def __init__(self, n_features, n_hidden, n_classes):super(GCN, self).__init__()self.gcn1 = GCNLayer(n_features, n_hidden)self.gcn2 = GCNLayer(n_hidden, n_classes)def forward(self, x, adj):x = self.gcn1(x, adj)x = F.relu(x)x = self.gcn2(x, adj)return x#F.log_softmax(x, dim=1)
# 示例数据(实际数据应根据具体情况加载)features = torch.tensor(features.values, dtype=torch.float32)
adj = torch.tensor(matrix, dtype=torch.float32)
labels = torch.tensor(lab, dtype=torch.long)
# features = torch.tensor([[1, 0], [0, 1], [1, 1]], dtype=torch.float32)
# adj = torch.tensor([[1, 1, 0], [1, 1, 1], [0, 1, 1]], dtype=torch.float32)
# labels = torch.tensor([0, 1, 0], dtype=torch.long)# 模型参数
n_features = features.shape[1]
n_hidden = 16
n_classes = len(torch.unique(labels))# 创建模型
model = GCN(n_features, n_hidden, n_classes)
model = model.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.01)
loss_fn = nn.CrossEntropyLoss()
# 训练模型
n_epochs = 200
for epoch in range(n_epochs):model.train()features, labels = features.cuda(), labels.cuda()adj = adj.cuda()optimizer.zero_grad()output = model(features, adj)loss = loss_fn(output, labels)loss.backward()optimizer.step()if (epoch + 1) % 20 == 0:print(f'Epoch {epoch+1}, Loss: {loss.item()}')
print("Training complete.")

参考

cora数据集及简介
图卷积网络详细介绍
GCN讲解

http://www.yayakq.cn/news/498075/

相关文章:

  • 站点建立网站的方法邢台163信息交友
  • 做网站要用什么语言wordpress喜欢_赏_分享
  • 免费网站制造wordpress 基础建站
  • 海南专业网站开发公司做带v头像的网站
  • 青岛网站制作定制电商运营入门基础知识
  • php网站后台密码怎么修改wordpress端口映射
  • 免费入驻的网站设计平台长沙传媒公司招聘
  • 营销网站首页设计品牌建设不
  • 又好又快自助建站跨境电商营销
  • 网站建设使用哪种语言好wordpress破解登录密码
  • 微信网站用什么语言开发培训医院网站建设
  • 模版网站是什么意思怎么快速推广app
  • 免费网站建设加盟苏州seo关键词优化方法
  • 网站目录wordpress多个分类
  • 上海网站备案号查询网站建设玖金手指排名12
  • 农业网站模板工业设计包括哪些
  • 火鸟门户官方网站html5网站开发参考文献
  • 企业网站开发合同wordpress会话缓存
  • 宁远县建设局网站h5视频
  • 湖北平台网站建设哪家好网站做子页面怎么做的
  • 为一个网站设计一个推广方案高端网站制作建设
  • 智能建造专业就业前景成都seo外包
  • 深圳龙岗个人网站建设电商网站价格监控
  • 网站建设网站设计多少钱建网站怎么做
  • 魔鬼做交易网站网站开发的优势
  • 建设网站说只给前端源码是什么意思怎么查看网站disallow
  • 个人做的卖货网站做虚假网站犯法吗
  • 做网站制作公司江苏省建设人才网站
  • 做视频网站服务器多少钱莱芜网站建设价格
  • 海南省住房建设厅网站首页企业建设网站的功能是什么意思