当前位置: 首页 > news >正文

然后做服装网站wordpress 网页 登录

然后做服装网站,wordpress 网页 登录,河北seo网站优化电话,做网站图片需要什么格式1. 协方差矩阵定义 在统计学中,方差是用来度量单个随机变量的离散程度,而协方差则一般用来刻画两个随机变量的相似程度。 参考: 带你了解什么是Covariance Matrix协方差矩阵 - 知乎 2. 协方差矩阵计算过程 将输入数据A进行中心化处理得到A…

1. 协方差矩阵定义

        在统计学中,方差是用来度量单个随机变量离散程度,而协方差则一般用来刻画两个随机变量相似程度。

参考: 带你了解什么是Covariance Matrix协方差矩阵 - 知乎

2. 协方差矩阵计算过程

  • 将输入数据A进行中心化处理得到A'。即通过减去每个维度的平均值来实现中心化。
    • 注意:平均值的计算有两种方式,按行计算(如numpy)和按列计算(如matlab),两者结果是不一样的,但原理是一样的,本文采用按行计算平均值为例。
    • 按列计算均值(每一行是一个observation(样本),那么每一列就是一个随机变量(特征))的一个实例:协方差矩阵计算方法_如何算瞬时协方差矩阵-CSDN博客
  • 对于按行计算方式:协方差矩阵等于去中心化后的数据A'乘以A'的转置矩阵, 然后除以 (列数-1)。如果输入数据的维度为(N,M),则该乘积的形状为(N,M)和(M,N),得到一个形状为(N,N)的矩阵。即对于NxM的矩阵A, 去中心化后的矩阵为A', 则协方差等于:

    • cov(A_{N\times M}) =\frac{1}{M-1}A'A'^{T}

3. 示例

一个矩阵A的协方差矩阵计算

设2x4的矩阵A为:

A = \begin{bmatrix} 1 & 2 & 4 & 1\\ 2& 3& 2 & 5 \end{bmatrix}

按行计算均值,意味着每一列是一个observation(样本)那么每一行就是一个随机变量(特征)举例如对于随机变量X,Y, 有四组采样结果(1,2), (2,3), (4,2), (1,5), 写成矩阵相乘的形式为:

\begin{bmatrix} X & Y \end{bmatrix}\begin{bmatrix} 1 & 2 & 4 & 1\\ 2& 3& 2 & 5 \end{bmatrix}

则均值向量为

a = \begin{bmatrix} 2\\ 3 \end{bmatrix}

去中心化后的矩阵A'为:

A' = \begin{bmatrix} -1 & 0 & 2 & -1\\ -1 &0 & -1 & 2 \end{bmatrix}

则协方差矩阵cov(A)为:

cov(A)=\frac{1}{4-1} A'A'^T

cov(A)=\frac{1}{3}\begin{bmatrix} -1 & 0 & 2 & -1\\ -1 &0 & -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & -1\\ 0 & 0\\ 2 & -1\\ -1& 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix} 

所以,

 cov(A) ==\begin{bmatrix} 2 & -1\\ -1 & 2 \end{bmatrix}

代码numpy验算

import numpy as npA = np.array([[1, 2, 4, 1], [2, 3, 2, 5]])
print("======= cov(A) =======")
print(np.cov(A))mean_A = np.mean(A,axis=1,keepdims=True)
print("======= mean_A =======")
print(mean_A)A1 = A - mean_A
print("======= A - mean_A =======")
print(A1)covA =np.matmul(A1, A1.T)/(A1.shape[1]-1)
print("======= covA =======")
print(covA)

输出结果:

两个矩阵A、B的协方差矩阵计算 

设矩阵A (维度NxM), B (维度NxM),去中心化后的矩阵为A', B', 则两个矩阵的协方差矩阵cov(A,B)为:

 cov(A,B) = \frac{1}{M-1}\begin{bmatrix} A'A'^T& A'B'^T \\ B'A'^T& B'B'^T \end{bmatrix}

设A,B (维度为2x4)值分别为:

A = \begin{bmatrix} 1 & 2 & 4 & 1\\ 2& 3& 2 & 5 \end{bmatrix},    B = \begin{bmatrix} 5 & 3& 4 & 4\\ 2& 2& 8 & 8 \end{bmatrix}

则 按行求平均值, 得平均值向量为a=[2,3]^Tb = [4,5]^T, 去中心化后,得到:

A' = \begin{bmatrix} -1 & 0 & 2 & -1\\ -1 &0 & -1 & 2 \end{bmatrix}, B' = \begin{bmatrix} 1 & -1 & 0 & 0\\ -3 & -3 & 3 & 3 \end{bmatrix}

则其协方差矩阵 cov(A,B)(维度为4x4)为

cov(A,B) = \frac{1}{3}\begin{bmatrix} A'A'^T& A'B'^T \\ B'A'^T& B'B'^T \end{bmatrix} = \begin{bmatrix} 2 & -1 & -\frac{1}{3} & 2\\ -1 & 2 & -\frac{1}{3} & 2\\ -\frac{1}{3} & -\frac{1}{3} &\frac{2}{3} & 0 \\ 2& 2& 0 & 12 \end{bmatrix} 

性质: cov(B,A) = (cov(A,B))^T

代码numpy验算


A = np.array([[1, 2, 4, 1], [2, 3, 2, 5]])
B = np.array([[5, 3, 4, 4], [2, 2, 8, 8]])B1 = B - np.mean(B,axis=1,keepdims=True)
A1 = A - np.mean(A,axis=1,keepdims=True)C11 = np.cov(A)
C22 = np.cov(B)
C12 = np.matmul(A1, B1.T)/(B1.shape[1]-1)
C21 = np.matmul(B1, A1.T)/(A1.shape[1]-1)C = np.vstack((np.hstack((C11,C12)),np.hstack((C21,C22))))print("======= np.cov(A,B) =======")
print(np.cov(A,B))print("======= C =======")
print(C)

结果:

参考:

协方差矩阵计算实例_协方差矩阵例子-CSDN博客

协方差的计算方法_协方差计算-CSDN博客 (matlab计算)

带你了解什么是Covariance Matrix协方差矩阵

https://wenku.csdn.net/answer/2408abac75f64f0186adff81be057f99

http://www.yayakq.cn/news/704694/

相关文章:

  • 建设部网人事考试网站个人怎么申请营业执照
  • 做视频包的网站有哪些北京互联网公司
  • 设计网站开发微网站自助建站平台哪个好
  • 深圳在哪些网站上面做推广外贸营销词
  • 门户网站建设和检务公开情况自查报告c 网站开发 readonly属性
  • 莘县聊城做网站网站开发部门工作职责
  • 网站建设需要注意哪些关键细节网站开发部组织架构
  • 2008如何添加iis做网站asp网站建设实录
  • 成都专业网站设计免费咨询一款可做引流的网站源码
  • 网站怎么做才吸引人云服务器使用教程
  • 三五做网站html创建站点的步骤
  • 网站运营课程北京高端网站建设费用
  • 网站的流量怎么赚钱wordpress 主题评论
  • 做语文题的网站网站建设一定要买数据盘吗
  • 网站备案 个人网站建设php实验报告
  • 做网站有前景吗php网站怎么做
  • 东莞网络公司哪个网站好手机网站建设服务电话
  • 网站模板 单页外贸网站解决方案
  • 网站建设运营属于经营范围手机端开发网站模板下载
  • 乐云网站建设欧式建筑网站
  • app营销型网站的特点天津建设教育培训中心网
  • 北滘网站建设北京seo排名分析
  • 建网站卓深圳十大装修公司品牌排行榜
  • 上海企业网站模板建站费用怎么做网站 新手做网站
  • 做网站创意是什么意思为什么网站打开是空白
  • 基于网站的网络营销方法有哪些网站空间服务器续费
  • 做公司月刊网站自媒体视频发布平台
  • 月嫂网站建设方案wordpress页面原文件
  • app推广的网站实时网站推广的最终目的是
  • 做网站的工作要求网络营销与传统营销有哪些区别