当前位置: 首页 > news >正文

易网拓营销型网站移动oa办公平台系统安卓版

易网拓营销型网站,移动oa办公平台系统安卓版,wordpress显示栏目名称,做ppt的网站叫什么软件目前的概率论或者随机变量书籍过分强调对独立随机变量的大数定律,中心极限定理,遗憾上界的估计。而对于非独立随机变量的研究很少,在《概率论的极限定理》中曾给出过一般随机变量求和的渐进分布簇的具体形式,然而形式却太过复杂。…

目前的概率论或者随机变量书籍过分强调对独立随机变量的大数定律,中心极限定理,遗憾上界的估计。而对于非独立随机变量的研究很少,在《概率论的极限定理》中曾给出过一般随机变量求和的渐进分布簇的具体形式,然而形式却太过复杂。下面将以切比雪夫不等式为基本出发点,研究非独立情况下的随机变量均值的一个误差上界,为后面研究提供基础。

(非独立随机变量概率误差上界) 若对于随机变量 { r t + 1 , r t + 1 , . . . , r t + n } \{r_{t+1},r_{t+1},...,r_{t+n}\} {rt+1,rt+1,...,rt+n},存在 D max ⁡ ≥ 0 D_{\max}\geq0 Dmax0使得对于任意 k k k,有 D [ r t + k ∣ H k ] ≤ D max ⁡ \mathbb{D}[r_{t+k}|H_k]\leq D_{\max} D[rt+kHk]Dmax,则有下面的式子成立,对于给定 ε > 0 \varepsilon >0 ε>0
P [ ∣ 1 n ∑ k = 1 n r t + k − 1 n ∑ k = 1 n E t + k [ r t + k ∣ H k ] ∣ > ε ] ≤ D [ ∑ k = 1 n r t + k ∣ H n ] n 2 ε 2 = ∑ k = 1 n D [ r t + k ∣ H n ] + ∑ i = 1 n ∑ j ≠ i n [ E [ r t + i r t + j ∣ H n ] − E [ r t + i ∣ H n ] E [ r t + j ∣ H n ] n 2 ε 2 = ∑ k = 1 n D [ r t + k ∣ H n ] + ∑ i = 1 n ∑ j ≠ i n ρ i j D [ r t + i ∣ H n ] D [ r t + j ∣ H n ] n 2 ε 2 = D max ⁡ n + ∑ i = 1 n ∑ j ≠ i ρ i j n 2 ε 2 \mathbb{P}[|\frac{1}{n}\sum_{k=1}^nr_{t+k}-\frac{1}{n}\sum_{k=1}^n\mathbb{E}_{t+k}[r_{t+k}|H_k]|>\varepsilon]\leq \frac{\mathbb{D}[\sum_{k=1}^nr_{t+k}|H_n]}{n^2\varepsilon^2}\\ =\frac{\sum_{k=1}^n\mathbb{D}[r_{t+k}|H_n]+\sum_{i=1}^n\sum_{j\ne i}^n[\mathbb{E}[r_{t+i}r_{t+j}|H_n]-\mathbb{E}[r_{t+i}|H_n]\mathbb{E}[r_{t+j}|H_n]}{n^2\varepsilon^2}\\ = \frac{\sum_{k=1}^n\mathbb{D}[r_{t+k}|H_n]+\sum_{i=1}^n\sum_{j\ne i}^n\rho_{ij}\sqrt{\mathbb{D}[r_{t+i}|H_n]}\sqrt{\mathbb{D}[r_{t+j}|H_n]}}{n^2\varepsilon^2}\\=D_{\max}\frac{n+\sum_{i=1}^n\sum_{j\ne i}\rho_{ij}}{n^2\varepsilon^2} P[n1k=1nrt+kn1k=1nEt+k[rt+kHk]>ε]n2ε2D[k=1nrt+kHn]=n2ε2k=1nD[rt+kHn]+i=1nj=in[E[rt+irt+jHn]E[rt+iHn]E[rt+jHn]=n2ε2k=1nD[rt+kHn]+i=1nj=inρijD[rt+iHn] D[rt+jHn] =Dmaxn2ε2n+i=1nj=iρij
其中 ρ i j ∈ [ − 1 , 1 ] \rho_{ij}\in[-1,1] ρij[1,1],表示随机变量 r t + i r_{t+i} rt+i和随机变量 r t + j r_{t+j} rt+j相关系数,描述了其相关程度。

(推论1) 可以看出的是,若相关性最强的情况,对于任意两个随机变量 r t + i r_{t+i} rt+i r t + j r_{t+j} rt+j间都是强相关的,即对于任意 r t + i , r t + j r_{t+i},r_{t+j} rt+i,rt+j ρ i j = 1 \rho_{ij}=1 ρij=1,则有对于给定的 ε > 0 \varepsilon >0 ε>0
P [ ∣ 1 n ∑ k = 1 n r t + k − 1 n ∑ k = 1 n E t + k [ r t + k ∣ H k ] ∣ > ε ] ≤ D max ⁡ ε 2 \mathbb{P}[|\frac{1}{n}\sum_{k=1}^nr_{t+k}-\frac{1}{n}\sum_{k=1}^n\mathbb{E}_{t+k}[r_{t+k}|H_k]|>\varepsilon]\leq \frac{D_{\max}}{\varepsilon^2} P[n1k=1nrt+kn1k=1nEt+k[rt+kHk]>ε]ε2Dmax
(推论2) 非独立随机变量若想要使得 大数定律成立,即 1 n ∑ k = 1 n r t + k \frac{1}{n}\sum_{k=1}^nr_{t+k} n1k=1nrt+k依概率收敛到 1 n ∑ k = 1 n E t + k [ r t + k ] \frac{1}{n}\sum_{k=1}^n\mathbb{E}_{t+k}[r_{t+k}] n1k=1nEt+k[rt+k],则需要使得 ∑ j ≠ i ρ i j < o ( n ) \sum_{j\ne i}\rho_{ij}<o(n) j=iρij<o(n)或者 ∑ i = 1 n ∑ j ≠ i ρ i j < o ( n 2 ) \sum_{i=1}^n\sum_{j\ne i}\rho_{ij}<o(n^2) i=1nj=iρij<o(n2)

即对于任意一个随机变量 r t + i r_{t+i} rt+i而言,其同其他随机变量 r t + j r_{t+j} rt+j的相关程度之和应该大于 n n n的线性增加。例如:随着 n n n的增加, r t + i r_{t+i} rt+i永远只有和其有限个 m m m r t + i − 1 , r t + i − 2 , . . . r t + i − m r_{t+i-1},r_{t+i-2},...r_{t+i-m} rt+i1,rt+i2,...rt+im相关,则此时大数定律依然成立。
(推论3) 若对于任意 ρ i j , i ≠ j \rho_{ij},i\ne j ρij,i=j ∣ ρ i j ∣ < ρ ≤ 1 |\rho_{ij}|<\rho\leq1 ρij<ρ1,则可以得到: P [ ∣ 1 n ∑ k = 1 n r t + k − 1 n ∑ k = 1 n E t + k [ r t + k ∣ H k ] ∣ > ε ] ≤ D max ⁡ ∣ ρ ∣ ε 2 + D max ⁡ ( 1 − ∣ ρ ∣ ) n ε 2 \mathbb{P}[|\frac{1}{n}\sum_{k=1}^nr_{t+k}-\frac{1}{n}\sum_{k=1}^n\mathbb{E}_{t+k}[r_{t+k}|H_k]|>\varepsilon]\leq \frac{D_{\max}|\rho|}{\varepsilon^2}+\frac{D_{\max}(1-|\rho|)}{n\varepsilon^2} P[n1k=1nrt+kn1k=1nEt+k[rt+kHk]>ε]ε2Dmaxρ+nε2Dmax(1ρ)
进一步可以由极限的保号性可以得到: lim ⁡ n → ∞ P [ ∣ 1 n ∑ k = 1 n r t + k − 1 n ∑ k = 1 n E t + k [ r t + k ∣ H k ] ∣ > ε ] ≤ D max ⁡ ∣ ρ ∣ ε 2 \lim_{n\rightarrow \infty} \mathbb{P}[|\frac{1}{n}\sum_{k=1}^nr_{t+k}-\frac{1}{n}\sum_{k=1}^n\mathbb{E}_{t+k}[r_{t+k}|H_k]|>\varepsilon]\leq\frac{D_{\max}|\rho|}{\varepsilon^2} nlimP[n1k=1nrt+kn1k=1nEt+k[rt+kHk]>ε]ε2Dmaxρ
Proof:设 a n = P [ ∣ 1 n ∑ k = 1 n r t + k − 1 n ∑ k = 1 n E t + k [ r t + k ∣ H k ] ∣ a_n= \mathbb{P}[|\frac{1}{n}\sum_{k=1}^nr_{t+k}-\frac{1}{n}\sum_{k=1}^n\mathbb{E}_{t+k}[r_{t+k}|H_k]| an=P[n1k=1nrt+kn1k=1nEt+k[rt+kHk],设 lim ⁡ n → ∞ a n = c 1 \lim_{n\rightarrow \infty} a_n = c_1 limnan=c1 b n = D max ⁡ ∣ ρ ∣ ε 2 + D max ⁡ ( 1 − ∣ ρ ∣ ) n ε 2 b_n=\frac{D_{\max}|\rho|}{\varepsilon^2}+\frac{D_{\max}(1-|\rho|)}{n\varepsilon^2} bn=ε2Dmaxρ+nε2Dmax(1ρ),令 c 2 = D max ⁡ ∣ ρ ∣ ε 2 c_2=\frac{D_{\max}|\rho|}{\varepsilon^2} c2=ε2Dmaxρ,则: lim ⁡ n → ∞ b n = c 2 \lim_{n\rightarrow \infty} b_n = c_2 limnbn=c2,由假设可知 a n ≤ b n a_n\leq b_n anbn恒成立。待证明 c 1 ≤ c 2 c_1\leq c_2 c1c2,下面采用反证法证明:
不妨设 c 1 > c 2 c_1 > c_2 c1>c2,则有:
lim ⁡ n → ∞ ( a n − b n ) = c 1 − c 2 > 0 \lim_{n\rightarrow \infty}(a_n-b_n)=c_1-c_2>0 nlim(anbn)=c1c2>0由极限的保号性: ∃ N \exists N N,当 n > N n>N n>N时有 a n − b n > 0 a_n-b_n>0 anbn>0,即 a n > b n a_n>b_n an>bn,然而这与条件 a n ≤ b n a_n\leq b_n anbn恒成立矛盾,因此得证 c 1 ≤ c 2 c_1\leq c_2 c1c2

(问题) 所以目前一个重要的问题是: ρ i j \rho_{ij} ρij如何进行估计?

http://www.yayakq.cn/news/101936/

相关文章:

  • 上海建设银行官网网站建筑工程公司名字起名大全
  • 长治网站开发西安哪家做网站最好
  • 文档怎么做网站链接石家庄建设
  • 北京科技网站开发自己怎么优化关键词
  • 网站上放的动画视频是怎么做的婚纱摄影网站排名
  • 企业可以做哪些网站有哪些有什么网站专门做美食的吗
  • 河南省南水北调建设管理局网站课程设计模板
  • 创建网站需要哪些要素手机网站快速建设
  • 公司网站修改方案做网站大约需要多少钱
  • dnf做汉堡怎么玩间网站河北师大科技楼网站建设
  • 网站建设 中企动力 东莞做网站怎么建站点
  • p2p网站建设报价2p排名软件开发的八个步骤
  • 松江网站关键词优化小程序平台商城
  • 公司网站需要备案么刚学做网站怎么划算
  • 自己做网站类型wordpress 能承受多大并发访问
  • 刷排名凡搜网站宝h5说 网站
  • 三端互通传奇发布网网站优化工作
  • 曾舜晞网站是哪个公司做的乐从做网站
  • 企业网站开发需要阿里云域名注册邮箱
  • 电子商务网站建设完整案例教程山东省建设工会网站
  • 携程旅游网官方网站 做攻略营销型网站建设细节
  • 免费网站制作教程网站建设与网络编辑综合实训课程指导手册
  • 本溪建网站网络销售每天做什么
  • 免费网站后台模版珠海企业集团网站建设
  • 邯郸开发网站有哪些禁止网站收录
  • 佛山建设网站公司吗网站建设对于企业发展的优势
  • 官方网站welcome怎么注册环球贸易网官网
  • 新网站怎样做优化电商行业
  • 做的网站百度上可以搜到吗环保公司网站模板
  • 温州 网站建设公司网站建设多少钱裙