当前位置: 首页 > news >正文

主备网站服务器自动切换 win2003越秀企业网站建设

主备网站服务器自动切换 win2003,越秀企业网站建设,《原始传奇》官方网站,ui生成器网站粒子群算法概念 粒子群算法 (particle swarm optimization,PSO) 由 Kennedy 和 Eberhart 在 1995 年提出,该算法模拟鸟群觅食的方法进行寻找最优解。基本思想:人们发现,鸟群觅食的方向由两个因素决定。第一个是自己当初飞过离食物…

粒子群算法概念

粒子群算法 (particle swarm optimization,PSO) 由 Kennedy 和 Eberhart 在 1995 年提出,该算法模拟鸟群觅食的方法进行寻找最优解。基本思想:人们发现,鸟群觅食的方向由两个因素决定。第一个是自己当初飞过离食物最近的位置,第二个因素是鸟群中离食物最近的鸟的位置。根据这个两个因素不断的改变自己的位置。最终,整个鸟群都能寻找到食物。

相关知识

1.编码与适应度函数,2.粒子群算法原理,3.粒子群算法流程,4.使用 python 实现粒子群算法。

编码与适应度函数

在粒子群算法中也需要进行编码,不过相对于遗传算法粒子群算法编码非常简单。例如,函数

f(x_1,x_2)=x_1^2+x_2^2

可直接将函数解(x_1,x_2)作为编码。而函数的值f(x_1,x_2)即可作为适应度,若求解函数最小值则适应度越小越好,若求解函数最大值则适应度越大越好。

粒子群算法原理

粒子群函数是根据鸟群寻找食物实现的优化算法,每一只鸟被称为粒子,即函数的一个解。我们已经知道,每一只鸟寻找食物是根据离食物最近的鸟的位置,与自己曾经离食物最近的位置来决定改变自己现在的位置。根据这个原理,粒子群算法核心公式如下:

v=wv+c_1r_1(p-x)+c_2r_2(p_g-x)...(1)
x=v+x...(2)

其中,x=(x_1,x_2,...,x_n)为鸟群的位置,v=(v_1,v_2,...,v_n)

为鸟飞行的速度,即鸟群更新位置的因素。而公式2就是决定速度的因素:

p:个体最佳位置
pg:全局最佳位置
w:惯性权重因子,用来控制速度的更新
c1,c2:加速度常数,通常设为2
r1,r2:0到1之间的随机数

粒子群算法流程

随机初始粒子群位置与速度
计算粒子群适应度
根据公式更新粒子群位置与速度
重复2,3直到满足停止条件

使用python实现粒子群算法

实现粒子群算法。并求解函数 f(x) 在区间 [-10,10] 上的最小值:

f(x_1,x_2)=(x_1-4)^2+(x_2-5)^2

首先我们需要对粒子群位置与速度进行随机初始:

import numpy as np
#初始化粒子群位置
x = np.random.uniform(x_bound[0], x_bound[1],(pop_size, dim))
#初始化粒子群速度
v = np.random.rand(pop_size,dim)

其中,x_bound 为 x 取值范围。pop_size 为粒子群大小,即鸟的数量。dim 为搜索空间维度。

再根据 x 计算适应度:

#f(x1,x2)=(x1-4)**2+(x2-5)**2,函数值即适应度
def f(x):return np.sum(np.square(x-np.array([4,5])), axis=1)
#计算适应度
fitness = f(x)

同时计算出全局最优位置与个体最优适应度、全局最优适应度:

#全局最优位置
pg = x[np.argmin(fitness)]
#个体最优适应度
individual_best_fitness = fitness
#全局最优适应度
global_best_fitness = np.min(individual_best_fitness)

最后开始进化,不断更新粒子群位置:

#encoding=utf8
import numpy as np
pop_size =10#粒子群大小
n_iters = 1000#训练轮数
dim = 2#搜索空间维度
w = 0.6#惯性权重因子
c1 = 2#加速度常数,通常设为2
c2 = 2#加速度常数,通常设为2
x_bound = [-10,10]#函数定义域
def pso(f):'''f:目标函数pg:最优解坐标'''#初始化粒子群位置x = np.random.uniform(low=x_bound[0], high=x_bound[1], size=(pop_size, dim)) #初始化粒子群速度v = np.random.rand(pop_size,dim)#初始个体最佳位置p = x#计算适应度fitness = f(x)#全局最优位置pg = x[np.argmin(fitness)]#个体最优适应度individual_best_fitness = fitness#全局最优适应度global_best_fitness = np.min(individual_best_fitness)#开始进化for i in range(n_iters):#产生随机数r1,r2r1 = np.random.rand(pop_size,dim)r2 = np.random.rand(pop_size,dim)#计算粒子群速度v = w*v+c1*r1*(p-x)+c2*r2*(pg-x)#更新粒子群位置x = v + x#计算更新后的适应度fitness = f(x)#需更新个体update_id = np.greater(individual_best_fitness, fitness)#更新pp[update_id] = x[update_id]#更新个体最优适应度individual_best_fitness[update_id] = fitness[update_id]#更新全局最优位置与全局最优适应度if np.min(fitness) < global_best_fitness:pg = x[np.argmin(fitness)]global_best_fitness = np.min(fitness)    return pg

http://www.yayakq.cn/news/952809/

相关文章:

  • 看乱码的网站杭州做网站的优质公司哪家好
  • 腾讯企点app优化关键词排名外包
  • 多用户网站管理系统企业需求发布平台
  • 网站友情链接建设工商官网查询企业信息
  • 私人网站制作怎么做网站更新和维护
  • asp代码如何修改asp网站网页域名名称1元做网站方案
  • 网站副标题wordpress做网站前怎么建立数据结构
  • 淮安网站建设要多少钱微官网入口
  • 谁能给我一个网站做网站 设计师很
  • 广州品牌设计公司苏州seo服务
  • 无为县住房建设局网站深圳小程序建设公司
  • 推广网站怎样阻止建湖人才网招工
  • 网站安装dw网页制作模板下载
  • 给别人做软件的网站wordpress搭建好后如何在前台显示
  • 做二手房网站邯郸市建设局网站材料下载入口
  • 深圳外贸建站与推广成都到西安高铁多少钱
  • 电影网站怎么做的有什么公司建网站
  • 在线咨询 1 网站宣传销售管理系统数据流图
  • 网站建设的经验做法网站的展现形式
  • 虚拟货币网站建设绿化信息网站建设
  • 网站页面关键词都一样网站地图怎么设置
  • 北京商业设计网站wordpress evolution
  • 象山企业门户网站建设html5做网站导航
  • 自动发货网站建设网站首页确认书
  • 百度云加速 网站关键词微网站开发技术架构
  • 怎么用织梦做网站后台wordpress 用户评论
  • 网站ip域名查询access数据库网站开发
  • 交易所网站建设教程wordpress feed源
  • 外贸 企业网站 建设企业建网站一般要多少钱
  • 广东省农业农村厅网站三星网上商城发货速度