当前位置: 首页 > news >正文

网站注册域名与制作洛阳网站建设电话

网站注册域名与制作,洛阳网站建设电话,拼多多 wordpress,百度权重查询入口实现 ChatPDF & RAG:密集向量检索(R)上下文学习(AG) RAG 是啥?实现 ChatPDF怎么优化 RAG? RAG 是啥? RAG 是检索增强生成的缩写,是一种结合了信息检索技术与语言生成…

实现 ChatPDF & RAG:密集向量检索(R)+上下文学习(AG)

    • RAG 是啥?
    • 实现 ChatPDF
    • 怎么优化 RAG?

 


RAG 是啥?

RAG 是检索增强生成的缩写,是一种结合了信息检索技术与语言生成模型的人工智能技术。

这种技术主要用于增强 LLM 的能力,使其能够生成更准确且符合上下文的答案,同时减少模型幻觉。

RAG通过将检索模型和生成模型结合起来,利用专有数据源的信息(比如多文档)来辅助文本生成。


从本地文档加载到生成语言模型回答的整个流程。

  1. 文本分块

    • 加载文件:这一步骤涉及从本地存储读取文件。
    • 读取文件:将读取的文件内容转换为文本格式。
    • 文本分割:按照一定的规则(例如按段落、句子或词语)将文本分割成小块,便于处理。
  2. 向量化存储

    • 文本向量化:使用NLP技术(如TF-IDF、word2vec、BERT)将文本转换为数值向量。
    • 存储到向量数据库:将文本的向量存储在向量数据库中,如使用FAISS进行高效存储和检索。
  3. 问句向量化

    • 这一步将用户的查询或问题转换为向量,使用的方法应与文本向量化相同,确保在相同的向量空间中比较。
  4. 在文本向量中匹配相似向量

    • 通过计算余弦相似度或欧式距离等,找出与查询向量最相似的顶部k个文本向量。
  5. 构建问题的上下文

    • 将匹配出的文本作为问题的上下文,与问题一起构成prompt,输入给语言模型。
  6. 生成回答

    • 将问题和其上下文提交给语言模型(如GPT系列),由模型生成相应的回答。

通用 RAG 就是如此,最终目的是提供精确和相关的信息回答。

实现 ChatPDF

实现 RAG 步骤有很多步,涉及的知识点也很多,直接上已实现的开源项目,不用深入理解里面每个知识点,能用就行。

开源项目:https://github.com/chatchat-space/Langchain-Chatchat

这个项目是 Apache-2.0 license,开源可商用。

conda create -n chatpdf python==3.11.7   # 创建虚拟环境# 拉取仓库
$ git clone https://github.com/chatchat-space/Langchain-Chatchat.git# 进入目录
$ cd Langchain-Chatchat# 安装全部依赖
$ pip install -r requirements.txt 
$ pip install -r requirements_api.txt
$ pip install -r requirements_webui.txt  # 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。# 模型下载
$ git lfs install
$ git clone https://huggingface.co/THUDM/chatglm4-9b   
$ git clone https://huggingface.co/BAAI/bge-large-zh# 初始化知识库和配置文件
$ python copy_config_example.py
$ python init_database.py --recreate-vs# 启动项目
$ python startup.py -a

这个自己实现的 ChatPDF 功能:

  • 解读文档,任何领域任何书籍任何专业,都能让人看懂
  • 使用RAG,回答是检索不是生成,极大减少幻觉
  • 能多文档,不会被长上下文限制(200k)
  • 本地部署的模型,不是调用api,不会泄露数据

怎么优化 RAG?

方案1:不同领域下,通用 RAG 方案效果也不好,一般需要按场景定制优化的。

  • 比如医学领域,用户搜索感冒,但医学数据库里面是风热流感,关键词不匹配就造成检索错位,只能得到通用信息
  • 分解子问题查询 + 多步查询

方案2:通用 RAG 在文本分块的时候,通常只是粗暴的把 pdf 划分为 1500 块,很多关联的上下文被迫分隔。

  • 最好是按照规则分块,而不是固定一个块,比如按标题(一级标题、二级标题、三级标题…),这样整个子块的内容都完整
  • 再链接每个子块和父文档,复现上下文的相关性
  • 如果那个作者标题写法不好,可以使用语义分割(阿里语义分割模型SeqModel)

方案3:PDF 解析时错漏很多信息,比如老年糖尿病标准变成了糖尿病标准,这个很影响效果

  • 不能使用 pdf 加载器自动拆分,而是要手动精细拆分,再加上多个选项排序,得到最精准的那个

方案4:词嵌入模型没有经过微调,比如我的数据都是医学的,使用的 embedding 模型 没有经过医学微调,很多名词、概念把握不清,只能捕捉到一些通用的医学术语和语法结构

  • 尝试更多embedding模型,获得更精确的检索结果。如:piccolo-large-zh 或 bge-large-zh-v1.5、text2vec、M3E、bge、text-embedding-3 等,或者自己微调词嵌入模型

方案5:如果涉及大量文档,使用 pgVector - 高性能向量数据库引擎,如果存在较多相似的内容,可以考虑分类存放数据,减少冲突的内容

方案6:改进传统 RAG 算法

  • 比如动态检索和重排序
  • 比如multihop多跳检索

方案7:基于文档中的表格问题,通用 RAG 这块效果不好。

  • 优先转为HTML、xml 格式,也可以 OCR

方案8:引入动态 RAG

  • 静态 RAG,使用提示词和已向量的数据,检索交互
  • 动态 RAG,一边交互,一边把交互内容,生成搜索词,会呼吸的RAG,实现自主更新
http://www.yayakq.cn/news/413182/

相关文章:

  • 商城 网站有哪些功能模块四川省特种作业证查询
  • 网页制作网站开发苏州企业如何建站
  • 自己做的网站怎么搜不到南宁网页制作招聘网
  • 米方科技网站建设今天重大国际新闻
  • 电子商务型网站建设广州网站建设服务商
  • 江苏常州网站建设公司建设企业网站注意事项
  • 长治市网站开发做网站的抬头标语怎么做
  • 青县网站建设公司好的公司网站建设
  • 高端企业网站建设规定个人能做网站吗
  • 手机网站模板制作工具电子商务网站建设与维护 书
  • 网站空间费1年1200做交流网站
  • 当年的51网站wordpress主题 sen
  • 济南网站建设哪里便宜以星空做的网站模板
  • 常州公诚建设项目管理有限公司官方网站公司网站制作计入什么科目
  • 坪山网站建设哪家好关于新农村网络建设网站
  • 邀请码网站怎么做黑龙江省城乡和住房建设厅网站首页
  • 房产网站设计方案二维码网站建设
  • 用flash做网站超链接汕头市小程序定制公司
  • 山东省建设建设协会网站找小程序开发公司
  • 免费网站空间申请教程网站 优化 教程
  • 湖南省建设厅官网网站服装行业网站模板
  • 商务网站建设实训报告1500字青岛seo用户体验
  • 长沙市住房和城乡建设部网站旅游电子商务网站开发制作
  • 高唐建筑公司网站推销什么企业做网站和app6
  • 佛山禅城区网站建设公司北京网站建设seo优化
  • 如何建立个人免费网站电商网站建设简单代码网页
  • 网站内容上传要求自己在网站做邮箱
  • wordpress微信站工行网站如何做理财风险评估
  • 做网站无锡电商网站做互联网金融
  • 建行手机网站网址是多少钱什么叫商业网站