当前位置: 首页 > news >正文

深圳房产网站建设口碑好的合肥网站建设

深圳房产网站建设,口碑好的合肥网站建设,个人可以建购物网站吗,wordpress cg主题文章目录 概要说明分组背包模板例题1思路code模板例题2思路code 有依赖的背包问题模板例题思路code 背包问题求方案数模板例题思路code 背包问题求具体方案模板例题思路code 概要说明 本文讲分组背包、有依赖的背包、 背包问题求方案数以及背包问题求具体方案 入门篇(01背包和…

文章目录

  • 概要说明
  • 分组背包
    • 模板例题1
    • 思路
    • code
    • 模板例题2
    • 思路
    • code
  • 有依赖的背包问题
    • 模板例题
    • 思路
    • code
  • 背包问题求方案数
    • 模板例题
    • 思路
    • code
  • 背包问题求具体方案
    • 模板例题
    • 思路
    • code

概要说明

本文讲分组背包、有依赖的背包、 背包问题求方案数以及背包问题求具体方案
入门篇(01背包和完全背包问题):传送门
进阶篇(多重、混合、二维费用背包):传送门

分组背包

模板例题1

acwing-分组背包问题

思路

分组背包也是01背包的一个变形,01背包中我们有n个物品,在这题中我们有n个组别,每个组别有k个物品
因此我们可以对每个组别都进行01背包,在当前组别选出最优解的情况下在进行下一轮组别的01背包
它的状态转移方程和01背包一样,在01背包的基础上改动一点点即可
它的时间复杂度在 O ( n 3 ) O(n^3) O(n3)

code

const int N=1e3+5;
int cnt[N],f[N],w[N][N],v[N][N];
void solve(){int W,n,t=1;cin >> n >> W;for(int i=1;i<=n;++i){cin >> cnt[i];for(int j=1;j<=cnt[i];++j){cin >> w[i][j] >> v[i][j];}		 		}for(int i=1;i<=n;++i)   for(int j=W;j>=0;--j)for(int k=1;k<=cnt[i];++k){if(j>=w[i][k]){f[j]=max(f[j],f[j-w[i][k]]+v[i][k]);}}cout << f[W];return ;
}

模板例题2

通天之分组背包

思路

这题在模板例题1的基础上稍微变动了一点点,它没有给你确切的组数
因此我们需要先找出最大的组数,并另开一个数组存当前组数的下标
剩下的和模板例题1差不多,代码如下:

code

const int N=1e3+5;
int cnt[N],f[N],w[N],v[N],g[N][N];//g数组中,行存的是组别,列存的是个数,它的取值存的是下标
void solve(){int W,n,t=0;cin >> W >> n;for(int i=1;i<=n;++i){int x;cin >> w[i] >> v[i] >> x;cnt[x]++;t=max(t,x);g[x][cnt[x]]=i;}for(int i=1;i<=t;++i)   for(int j=W;j>=0;--j)for(int k=1;k<=cnt[i];++k){int st=g[i][k];//取出当前组别的下标if(j>=w[st]){f[j]=max(f[j],f[j-w[st]]+v[st]);}}cout << f[W];return ;
}

有依赖的背包问题

模板例题

有依赖的背包问题

思路

首先我们明确一点:想要取出子节点必须取出父节点
那么想要价值尽可能大,我们必须倒着遍历这颗树
遍历树最基本的算法是什么呢?
很显然,我们很快就能想到dfs回溯的思想,先来看这张图:
在这里插入图片描述

先看左边这条线1-2-4,我们将这颗树的节点分开来看,4的父节点为2,2的父节点1
那么我们想取出4的价值,首先必须取出2的价值,我们想取出2的价值,首先必须取出1的价值

我们倒着遍历树,当我们遍历到4时,发现4没有子节点,这时我们就回溯到前一个状态2
在回溯之前我们将4的价值存入到一个数组中,这时我们考虑状态2,它有2种选择,选或者不选
这时候它的状态转移方程和01背包是一样的

注意:在选状态4物品之前需要减去状态2的重量,因为状态2必须先选,才能选状态4

接着我们将选完的状态回溯到前一个状态1,同理,我们在选物品之前需要先减去状态1的重量
然后它也是有2种选择,选或者不选

对于其他线路也是同理,最终都会回溯到状态1,那么我们只需要从状态1开始进行dfs,遍历到树的叶节点时开始回溯即可

讲完思路,接着讲一下如何用代码实现出来
首先我们需要标记根节点的位置,用vector建树,将子节点存入父节点中
开一个二维数组,行代表节点,列代表重量w,所存的值为价值v

将根节点进行dfs,将当前 f [ x ] [ w − W ] 都标记为 v , x 代表节点, w 代表重量, W 为背包容量, v 为价值 f[x][w-W]都标记为v,x代表节点,w代表重量,W为背包容量,v为价值 f[x][wW]都标记为vx代表节点,w代表重量,W为背包容量,v为价值
这样方便我们递归回溯时进行状态转移
接着我们一直遍历当前节点的子节点,将子节点进行dfs循环,直到不能遍历为止
这样我们就像上面所说的,遍历到4不能遍历,回溯到2的状态
接着进行01背包的状态转移方程,当前循环结束,在回溯到上一次的状态
最终dfs循环结束,输出 f [ r o o t ] [ W ] f[root][W] f[root][W]

接下来我们看代码:

code

const int N=1e3+5;
int w[N],v[N],f[N][N];
vector<int> g[N];
int n,W;
void dfs(int x){for(int i=w[x];i<=W;++i) f[x][i]=v[x];//将w~W的重量都标记为vfor(auto y : g[x]){dfs(y);//一直循环子节点,直到不能循环为止for(int j=W;j>=w[x];--j)for(int k=0;k<=j-w[x];++k){//所选的物品必须减去当前重量f[x][j]=max(f[x][j],f[x][j-k]+f[y][k]);//选子节点的物品还是不选子节点的物品}}
}
void solve(){cin >> n >> W;int root;for(int i=1;i<=n;++i){int x;cin >> w[i] >> v[i] >> x;if(x==-1) root=i;//标记else g[x].push_back(i);//建树}dfs(root);cout << f[root][W];return ;
}

背包问题求方案数

模板例题

背包问题求方案数

思路

这种类型的题目不需要我们求具体的价值,但是需要我们求最优价值的方案总数
那么我们首先还是需要算出最大的价值,然后将能到达当前价值的方案数进行相加

那么具体该如何实现呢?
我们需要在01背包的基础上,多开一个g数组,用于统计方案数
对于每步的状态来源,我们都有两种情况,一种是本身,一种是当前容量减去物品容量加上物品价值
这时我们新开一个变量temp,这个变量统计两种情况的最大值
若temp等于本身,那么 g [ i ] g[i] g[i]加上它本身
若temp等于当前容量减去物品容量加上物品价值,那么 g [ i ] + g [ j − w [ i ] g[i]+g[j-w[i] g[i]+g[jw[i]
每次加上都记得要取模
然后将当前状态 f [ j ] f[j] f[j]更新为temp
最后找出背包所能容量的最大价值,遍历f数组,若当前 f [ i ] f[i] f[i]等于最大价值,加上 g [ i ] g[i] g[i]

接下来看代码进一步理解

code

const int N=1e3+5;
int f[N],g[N],w[N],v[N];
void solve(){int n,W;cin >> n >> W;for(int i=1;i<=n;++i){cin >> w[i] >> v[i];}g[0]=1;//若不选物品,方案数为1for(int i=1;i<=n;++i)for(int j=W;j>=w[i];--j){int temp=max(f[j],f[j-w[i]]+v[i]);//temp为当前状态的最大值int c=0;//统计数量if(temp==f[j]) c=(c+g[j])%mod;//加上方案数if(temp==f[j-w[i]]+v[i]) c=(c+g[j-w[i]])%mod;f[j]=temp,g[j]=c;//状态转移}int maxn=0;for(int i=0;i<=W;++i) maxn=max(maxn,f[i]);//找到最大价值int ans=0;for(int i=0;i<=W;++i){if(f[i]==maxn) ans=(ans+g[i])%mod;//统计个数}cout << ans;return ;
}

背包问题求具体方案

模板例题

背包问题求具体方案

思路

首先我们需要回溯到原来的状态,这时候我们开一维数组就会丢失原来的状态,这时候必须开二维数组来存储数据
我们先考虑一个问题,我们是从前往后回溯,还是从后往前回溯呢?
答案很明显,我们需要从前往后回溯
为什么呢?
题目要求输出字典序最小的方案

我们拿一个例子来说明:
3 3
1 2
2 4
2 4

物品总数为3,背包容量为3,每个物品先输入重量,在输入价值
如果我们从后往前回溯,那么我们求出的具体方案为1 3(最后将数组颠倒一下)
可是答案很明显为1 2,这样字典序才是最小的

那么我们就将这种方法pass掉

那么我们一开始需要第n件物品的状态转移到第1件物品,这样 f [ 1 ] [ W ] f[1][W] f[1][W]就为最大的价值
首先还是先套01背包的模板,只不过从1开始变为从n开始
然后我们从序号1遍历到序号n,判断当前的状态是不是由当前价值加上上一个状态转移过来的,即 f [ i ] [ j ] = = f [ i + 1 ] [ j − w [ i ] ] + v [ i ] f[i][j]==f[i+1][j-w[i]]+v[i] f[i][j]==f[i+1][jw[i]]+v[i]
若满足,则当前背包容量减去 w [ i ] w[i] w[i],直接输出当前下标即可

接下来看代码

code

const int N=1e3+5;
int f[N][N],v[N],w[N],cnt[N];
void solve(){int n,W;cin >> n >> W;for(int i=1;i<=n;++i){cin >> w[i] >> v[i];}for(int i=n;i>=1;--i)//倒着来for(int j=0;j<=W;++j){f[i][j]=f[i+1][j];if(j>=w[i]) f[i][j]=max(f[i][j],f[i+1][j-w[i]]+v[i]);}for(int i=1,j=W;i<=n;++i){if(j>=w[i] && f[i][j]==f[i+1][j-w[i]]+v[i]){//判断状态cout << i << " ";j-=w[i];}}return ;
}
http://www.yayakq.cn/news/99250/

相关文章:

  • 有了网站源码如何做网页全国各大网站
  • 网站建设源代码交付有哪些可以免费做视频的网站
  • 开江网站建设做淘客网站备案
  • 网站建设用什么系统好免费产品推广软件
  • 有没有做美食的小视频网站360网站排名怎么做
  • 江西省大余县建设局网站怎么做一个企业网站
  • 类似+wordpress+建站网站被黑了怎么恢复
  • 雷山网站建设asp网站建设 文献
  • 关于建设旅游网站的书籍恩施seo
  • 公司做网站设计要注意重庆建设人才促进网
  • .net做的大型网站吗黄页查企业名录
  • 东营seo网站排名erp软件公司
  • 信息流广告公司排名网站seo在线优化
  • xiu主题做的网站vue cms 网站开发
  • 营销网站制作多少钱wordpress验证码失效
  • 建网站推广效果怎么样做的网站上更改内容改怎么
  • 网站建设相关网站青岛网站设计公司价格
  • 网站图片移动怎么做的青岛官网优化
  • 静安做网站制作一个app软件需要多久
  • 网站收录提交入口官网wordpress主题交友
  • 做企业网站需要自己有公司吗东莞小程序开发解决方案
  • 福永外贸网站建设公司wordpress自带gallery
  • 论述网站建设的具体步骤有哪些wordpress 域名更改 页面链接
  • 小江网站建设商业空间平面图
  • 百度只收录网站首页企业做网站有什么用
  • 东莞网站建设员wordpress博客整站源码
  • 北京诚信建设网站wordpress 管网
  • 站长工具永久更新php支持大型网站开发吗
  • 郑州做网站哪家公司最好小程序开发平台源代码下载
  • 内蒙网站设计公司最新款手机