当前位置: 首页 > news >正文

网站算信息化建设东莞网站建设 硅胶

网站算信息化建设,东莞网站建设 硅胶,网站有哪些平台,制作网站管理系统文章目录 回顾Google NetInception1*1卷积Inception模块的实现网络构建完整代码 ResNet残差模块 Resedual Block残差网络的简单应用残差实现的代码 练习 回顾 这是一个简单的线性的卷积神经网络 然而有很多更为复杂的卷积神经网络。 Google Net Google Net 也叫Inception V…

文章目录

  • 回顾
  • Google Net
    • Inception
    • 1*1卷积
    • Inception模块的实现
    • 网络构建
    • 完整代码
  • ResNet
    • 残差模块 Resedual Block
    • 残差网络的简单应用
    • 残差实现的代码
  • 练习

回顾

这是一个简单的线性的卷积神经网络
在这里插入图片描述
然而有很多更为复杂的卷积神经网络。

Google Net

Google Net 也叫Inception V1,是由Inception模块堆叠而成的卷积神经网络。
详情请见我的另一篇博客
在这里插入图片描述

Inception

在这里插入图片描述
基本思想

  • 首先通过1x1卷积来降低通道数把信息聚集
  • 再进行不同尺度的特征提取以及池化,得到多个尺度的信息
  • 最后将特征进行叠加输出
  • (官方说法:可以将稀疏矩阵聚类为较为密集的子矩阵来提高计算性能)
    主要过程:
  • 在3x3卷积和5x5卷积前面、3x3池化后面添加1x1卷积,将信息聚集且可以有效减少参数量(称为瓶颈层);
  • 下一层block就包含1x1卷积,3x3卷积,5x5卷积,3x3池化(使用这样的尺寸不是必需的,可以根据需要进行调整)。这样,网络中每一层都能学习到“稀疏”(3x3、5x5)或“不稀疏”(1x1)的特征,既增加了网络的宽度,也增加了网络对尺度的适应性;
  • 通过按深度叠加(deep concat)在每个block后合成特征,获得非线性属性。
  • 注:在进行卷积之后都需要进行ReLU激活,这里默认未注明。

1*1卷积

  • 1*1卷积:卷积核大小为1的卷积,主要用于改变通道数,而不会改变特征图W、H。
  • 也可以用于进行特征融合。
  • 在执行计算昂贵的 3 x 3 卷积和 5 x 5 卷积前,往往会使用 1 x 1 卷积来减少计算量。

在这里插入图片描述
在这里插入图片描述

Inception模块的实现

在这里插入图片描述
注意:只有所有特征图大小一样(W、H一样),才能进行拼接,通道数可以不同。
在这里插入图片描述

网络构建

# design model using class
class InceptionA(nn.Module):def __init__(self, in_channels):super(InceptionA, self).__init__()self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)#1*1卷积self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)#1*1卷积self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)#padding=2,大小不变self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)#1*1卷积self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)#padding=1,大小不变self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)#padding=1,大小不变self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)#1*1卷积def forward(self, x):branch1x1 = self.branch1x1(x)branch5x5 = self.branch5x5_1(x)branch5x5 = self.branch5x5_2(branch5x5)branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch3x3 = self.branch3x3_3(branch3x3)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch5x5, branch3x3, branch_pool]return torch.cat(outputs, dim=1)  # b,c,w,h  c对应的是dim=1class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, kernel_size=5)self.incep1 = InceptionA(in_channels=10)  # 与conv1 中的10对应self.conv2 = nn.Conv2d(88, 20, kernel_size=5)  # 88 = 24x3 + 16self.incep2 = InceptionA(in_channels=20)  # 与conv2 中的20对应self.mp = nn.MaxPool2d(2)self.fc = nn.Linear(1408, 10)#1408=88*4*4,是x展开之后的值;其实可以不用自己计算def forward(self, x):in_size = x.size(0)x = F.relu(self.mp(self.conv1(x)))#W、H=12x = self.incep1(x)x = F.relu(self.mp(self.conv2(x)))#W、H=4x = self.incep2(x)x = x.view(in_size, -1)x = self.fc(x)return x

完整代码

import numpy as np
import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])  # 归一化,均值和方差train_dataset = datasets.MNIST(root='dataset', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='dataset', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using class
class InceptionA(nn.Module):def __init__(self, in_channels):super(InceptionA, self).__init__()self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)#1*1卷积self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)#1*1卷积self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)#padding=2,大小不变self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)#1*1卷积self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)#padding=1,大小不变self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)#padding=1,大小不变self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)#1*1卷积def forward(self, x):branch1x1 = self.branch1x1(x)branch5x5 = self.branch5x5_1(x)branch5x5 = self.branch5x5_2(branch5x5)branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch3x3 = self.branch3x3_3(branch3x3)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch5x5, branch3x3, branch_pool]return torch.cat(outputs, dim=1)  # b,c,w,h  c对应的是dim=1class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, kernel_size=5)self.incep1 = InceptionA(in_channels=10)  # 与conv1 中的10对应self.conv2 = nn.Conv2d(88, 20, kernel_size=5)  # 88 = 24x3 + 16self.incep2 = InceptionA(in_channels=20)  # 与conv2 中的20对应self.mp = nn.MaxPool2d(2)self.fc = nn.Linear(1408, 10)#1408=88*4*4,是x展开之后的值;其实可以不用自己计算def forward(self, x):in_size = x.size(0)x = F.relu(self.mp(self.conv1(x)))#W、H=12x = self.incep1(x)x = F.relu(self.mp(self.conv2(x)))#W、H=4x = self.incep2(x)x = x.view(in_size, -1)x = self.fc(x)return xmodel = Net()device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#定义device,如果有GPU就用GPU,否则用CPUmodel.to(device)
# 将所有模型的parameters and buffers转化为CUDA Tensor.criterion=torch.nn.CrossEntropyLoss()
optimizer=torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
def train(epoch):running_loss=0.0for batch_id,data in enumerate(train_loader,0):inputs,target=datainputs,target=inputs.to(device),target.to(device)#将数据送到GPU上optimizer.zero_grad()# forward + backward + updateoutputs=model(inputs)loss=criterion(outputs,target)loss.backward()optimizer.step()running_loss +=loss.item()if batch_id% 300==299:print('[%d,%5d] loss: %.3f' % (epoch+1,batch_id,running_loss/300))running_loss=0.0accracy = []
def test():correct=0total=0with torch.no_grad():for data in test_loader:inputs,target=datainputs,target=inputs.to(device),target.to(device)#将数据送到GPU上outputs=model(inputs)predicted=torch.argmax(outputs.data,dim=1)total+=target.size(0)correct+=(predicted==target).sum().item()print('Accuracy on test set : %d %% [%d/%d]'%(100*correct/total,correct,total))accracy.append([100*correct/total])if __name__ == '__main__':for epoch in range(10):train(epoch)test()x=np.arange(10)plt.plot(x, accracy)plt.xlabel("Epoch")plt.ylabel("Accuracy")plt.grid()plt.show()

训练结果:
在这里插入图片描述

ResNet

卷积层是不是越多越好?

  • 在CIFAR数据集上利用20层卷积和56层卷积进行训练,56层卷积的loss还要大一些。
  • 这是因为网络层数太多,可能会出现梯度消失和梯度爆炸
  • 梯度消失和梯度爆炸:是在反向传播计算梯度时,梯度太小或者太大,随着网络层数不断加深,梯度值是呈现指数增长,变得趋近于0或者很大。比如说 0. 4 n 0.4^n 0.4n,n=100时,值就已结很小了;比如说 1. 5 n 1.5^n 1.5n,n=100时也非常大了。
    在这里插入图片描述

残差模块 Resedual Block

**残差连接:

  • **很简单!就是一个跳连接,将输入X和卷积之后的特征图相加就行了,即y=x+f(x)。
  • 相加需要两个特征图的大小和通道数都一样。
  • 可以获得更丰富的语义特征,避免梯度消失和爆炸。
  • 非常常用!!!是必须学会的一个小技巧。
    在这里插入图片描述
    在这里插入图片描述
    残差连接,可以跨层进行跳连接!发挥创造力炼丹吧!
    在这里插入图片描述

残差网络的简单应用

在这里插入图片描述

残差实现的代码

在这里插入图片描述

class ResidualBlock(torch.nn.Module):def __init__(self,channels):super(ResidualBlock,self).__init__()self.channels=channelsself.conv1=torch.nn.Conv2d(channels,channels,kernel_size=3,padding=1)#保证输出输入通道数都一样self.conv2=torch.nn.Conv2d(channels,channels,kernel_size=3,padding=1)self.conv3=torch.nn.Conv2d(channels,channels,kernel_size=1)def forward(self,x):y=F.relu(self.conv1(x))y=self.conv2(y)return F.relu(x+y)

接下来,笔交给你了!
在这里插入图片描述
我的训练结果:

Accuracy on test set : 98 % [9872/10000]
[7,  299] loss: 0.027
[7,  599] loss: 0.032
[7,  899] loss: 0.032
Accuracy on test set : 98 % [9874/10000]
[8,  299] loss: 0.028
[8,  599] loss: 0.026
[8,  899] loss: 0.026
Accuracy on test set : 99 % [9901/10000]
[9,  299] loss: 0.022
[9,  599] loss: 0.025
[9,  899] loss: 0.027
Accuracy on test set : 99 % [9900/10000]
[10,  299] loss: 0.024
[10,  599] loss: 0.019
[10,  899] loss: 0.027
Accuracy on test set : 98 % [9895/10000]

在这里插入图片描述

练习

请实现以下两种残差结构,并用他们构建网络跑模型。
在这里插入图片描述

http://www.yayakq.cn/news/853901/

相关文章:

  • 网站做跳转的意义基于html5的旅游网站开发
  • 微信小程序商城怎么弄济南优化网站厂家
  • 猎头网站模板网站建设合同技术开发合同
  • 如何优化公司网站汽车设计公司排名前十强
  • 营销型网站试运营调忧app下载中心
  • 做网站横幅技巧杏坛网站建设
  • 物流网站建设的小结wordpress页面的排序
  • 苏州做网站套路骗建站哪家公司比较好而且不贵
  • 药品加工厂做网站三合一做网站
  • 成都网站快照优化公司苏州建站公司认准苏州聚尚网络
  • 无锡网站制作哪里有小型工作室项目大全
  • 建设一个旅游网站厦门seo全网营销
  • 织梦商城网站源码盘锦威旺做网站建设公司
  • 跟犀牛云一样做网站的html网站开发图片素材
  • 淮阴区住房和城乡建设局网站电商主图一键生成免费
  • 营销型网站架构师seo内容优化是什么
  • 用织梦做外文网站怎么得到wordpress文章加图片
  • h5网站有哪些wordpress是国外的吗
  • 兰州网站建设net网站开发 兼职
  • dz网站后台建立网站的阶段
  • 电子商务网站建设规划书实例28岁女生学前端开发难吗
  • 论坛型网站建设微信个人公众号如何开通
  • 成都信用建设网站网站里面的数据库是怎么做的
  • 域名交易网站能够做外贸的网站有哪些问题
  • 北京外包做网站如何报价企业网站要更新文章吗
  • 申请好域名后怎么建设网站湖北工程建设信息网官网
  • 网站开发企业上市公司集团网站建设
  • 企业网站关联优化网站建设买了服务器后怎么做
  • 武冈市住房和城乡建设局网站中国建设银行网站主页
  • 哪些做直播卖食品的网站有哪些建设体育课程基地网站