当前位置: 首页 > news >正文

上饶便宜的网站建设ziranzhi wordpress

上饶便宜的网站建设,ziranzhi wordpress,物联网的应用,设备管理系统appApache TVM 是一个端到端的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。更多 TVM 中文文档可访问 → Apache TVM 中文站​tvm.hyper.ai/ 作者:Hua Jiang 本教程介绍如何将「Pipeline Executor」与 Relay 配合使用。 import tvm from t…

Apache TVM 是一个端到端的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。更多 TVM 中文文档可访问 →

Apache TVM 中文站​tvm.hyper.ai/

作者:Hua Jiang

本教程介绍如何将「Pipeline Executor」与 Relay 配合使用。

import tvm
from tvm import te
import numpy as np
from tvm.contrib import graph_executor as runtime
from tvm.relay.op.contrib.cutlass import partition_for_cutlass
from tvm import relay
from tvm.relay import testing
import tvm.testing
from tvm.contrib.cutlass import finalize_modulesimg_size = 8

创建一个简单的网络,这个网络也可以是一个预训练的模型。

创建一个由 convolution、batch normalization、dense 和 ReLU activation 组成的网络用于演示。

def get_network():out_channels = 16batch_size = 1data = relay.var("data", relay.TensorType((batch_size, 3, img_size, img_size), "float16"))dense_weight = relay.var("dweight", relay.TensorType((batch_size, 16 * img_size * img_size), "float16"))weight = relay.var("weight")bn_gamma = relay.var("bn_gamma")bn_beta = relay.var("bn_beta")bn_mmean = relay.var("bn_mean")bn_mvar = relay.var("bn_var")simple_net = relay.nn.conv2d(data=data, weight=weight, kernel_size=(3, 3), channels=out_channels, padding=(1, 1))simple_net = relay.nn.batch_norm(simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar)[0]simple_net = relay.nn.relu(simple_net)simple_net = relay.nn.batch_flatten(simple_net)simple_net = relay.nn.dense(simple_net, dense_weight)simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net)data_shape = (batch_size, 3, img_size, img_size)net, params = testing.create_workload(simple_net)return net, params, data_shapenet, params, data_shape = get_network()

将网络拆分成两个子图。

这个来自单元测试的名为「graph_split」的函数只是一个例子。用户可以创建自定义逻辑来拆分计算图。

import inspect
import ostutorial_dir = os.path.dirname(inspect.getfile(lambda: None))
os.sys.path.append(os.path.join(tutorial_dir, "../../../tests/python/relay"))
from test_pipeline_executor import graph_split

将网络拆分成两个子图。

split_config = [{"op_name": "nn.relu", "op_index": 0}]
subgraphs = graph_split(net["main"], split_config, params)

生成的子图如下所示。

"""
#subgraphs[0])def @main(%data: Tensor[(1, 3, img_size, img_size), float16]) {%0 = nn.conv2d(%data, meta[relay.Constant][0] /* ty=Tensor[(16, 3, 3, 3), float16] */, padding=[1, 1, 1, 1], channels=16, kernel_size=[3, 3]) /* ty=Tensor[(1, 16, img_size, img_size), float16] */;%1 = nn.batch_norm(%0, meta[relay.Constant][1] /* ty=Tensor[(16), float16] */, meta[relay.Constant][2] /* ty=Tensor[(16), float16]*/, meta[relay.Constant][3] /* ty=Tensor[(16), float16] */, meta[relay.Constant][4] /* ty=Tensor[(16), float16] */) /* ty=(Tensor[(1,16, img_size, img_size), float16], Tensor[(16), float16], Tensor[(16), float16]) */;%2 = %1.0;nn.relu(%2) /* ty=Tensor[(1, 16, img_size, img_size), float16] */}#subgraphs[1]def @main(%data_n_0: Tensor[(1, 16, 8, 8), float16] /* ty=Tensor[(1, 16, 8, 8), float16] */) {%0 = nn.batch_flatten(%data_n_0) /* ty=Tensor[(1, 1024), float16] */;nn.dense(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 1024), float16] */, units=None) /* ty=Tensor[(1, 1), float16] */}"""

用 cutlass target 构建子图。

cutlass = tvm.target.Target({"kind": "cutlass","sm": int(tvm.target.Target("cuda").arch.split("_")[1]),"use_3xtf32": True,"split_k_slices": [1],"profile_all_alignments": False,"find_first_valid": True,"use_multiprocessing": True,"use_fast_math": False,"tmp_dir": "./tmp",},host=tvm.target.Target("llvm"),
)def cutlass_build(mod, target, params=None, target_host=None, mod_name="default"):target = [target, cutlass]lib = relay.build_module.build(mod, target=target, params=params, target_host=target_host, mod_name=mod_name)return lib

使用 pipeline executor 在 pipeline 中运行两个子图。

在 cmake 中将 USE_PIPELINE_EXECUTOR 和 USE_CUTLASS 设置为 ON。

from tvm.contrib import graph_executor, pipeline_executor, pipeline_executor_build

创建子图 pipeline 配置。将子图模块与 target 关联起来。使用 CUTLASS BYOC 构建第二个子图模块。

mod0, mod1 = subgraphs[0], subgraphs[1]
# 将 cutlass 作为 codegen。
mod1 = partition_for_cutlass(mod1)

获取 pipeline executor 配置对象。

pipe_config = pipeline_executor_build.PipelineConfig()

设置子图模块的编译 target。

pipe_config[mod0].target = "llvm"
pipe_config[mod0].dev = tvm.cpu(0)

将第二个子图模块的编译 target 设置为 cuda。

pipe_config[mod1].target = "cuda"
pipe_config[mod1].dev = tvm.device("cuda", 0)
pipe_config[mod1].build_func = cutlass_build
pipe_config[mod1].export_cc = "nvcc"
# 通过连接子图模块创建 pipeline。
# 全局输入将被转发到第一个名为 mod0 的模块的输入接口
pipe_config["input"]["data"].connect(pipe_config[mod0]["input"]["data"])
# mod0 的第一个输出会转发到 mod1 的输入接口
pipe_config[mod0]["output"][0].connect(pipe_config[mod1]["input"]["data_n_0"])
# mod1 的第一个输出将是第一个全局输出。
pipe_config[mod1]["output"][0].connect(pipe_config["output"][0])

pipeline 配置如下:

"""
print(pipe_config)Inputs|data: mod0:dataoutput|output(0) : mod1.output(0)connections|mod0.output(0)-> mod1.data_n_0
"""

构建 pipeline executor。

with tvm.transform.PassContext(opt_level=3):pipeline_mod_factory = pipeline_executor_build.build(pipe_config)

输出结果:

/workspace/python/tvm/driver/build_module.py:267: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead."target_host parameter is going to be deprecated. "

将参数配置导出到一个文件中。

directory_path = tvm.contrib.utils.tempdir().temp_dir
os.makedirs(directory_path, exist_ok=True)
config_file_name = pipeline_mod_factory.export_library(directory_path)

使用 load 函数创建和初始化 PipelineModule。

pipeline_module = pipeline_executor.PipelineModule.load_library(config_file_name)

运行 pipeline executor。

分配输入数据。

data = np.random.uniform(-1, 1, size=data_shape).astype("float16")
pipeline_module.set_input("data", tvm.nd.array(data))

以 pipeline 模式运行两个子图,异步或同步获取输出。以下示例为同步获取输出。

pipeline_module.run()
outputs = pipeline_module.get_output()

使用 graph_executor 进行验证。

用 graph_executor 依次运行这两个子图,得到输出。

target = "llvm"
dev0 = tvm.device(target, 0)
lib0 = relay.build_module.build(mod0, target, params=params)
module0 = runtime.GraphModule(lib0["default"](dev0))
cuda = tvm.target.Target("cuda", host=tvm.target.Target("llvm"))
lib1 = relay.build_module.build(mod1, [cuda, cutlass], params=params)
lib1 = finalize_modules(lib1, "compile.so", "./tmp")dev1 = tvm.device("cuda", 0)module1 = runtime.GraphModule(lib1["default"](dev1))module0.set_input("data", data)
module0.run()
out_shape = (1, 16, img_size, img_size)
out = module0.get_output(0, tvm.nd.empty(out_shape, "float16"))
module1.set_input("data_n_0", out)
module1.run()
out_shape = (1, 1)
out = module1.get_output(0, tvm.nd.empty(out_shape, "float16"))

输出结果:

/workspace/python/tvm/driver/build_module.py:267: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead."target_host parameter is going to be deprecated. "

验证结果。

tvm.testing.assert_allclose(outputs[0].numpy(), out.numpy())

下载 Python 源代码:using_pipeline_executor.py

下载 Jupyter Notebook:using_pipeline_executor.ipynb

http://www.yayakq.cn/news/104584/

相关文章:

  • 做网站的如何开发业务软件商城app下载安卓版
  • 个人网站设计说明完美世界培训机构
  • 设计素材网站情人节网站批量创建程序
  • nas做流媒体网站支付网站设计
  • 帝国cms做电影网站南京本地网站
  • 做it的中国企业网站房地产信息查询网
  • php学校网站源码网站建设找祥赢
  • 俄罗斯在线 网站制作wordpress 网店
  • 麻城建设网站WordPress点击logo返回首页
  • 无锡网站建设推广公司西部数码支持wordpress
  • 做零售去哪个外贸网站网站模板下载带后台
  • 网站开发小组宁波网站搭建定制非模板网站建设
  • 企业做网站设计舆情公司
  • 做网站感想谷歌怎么做网站优化
  • 松江建设投资有限公司网站如何取消网站备案
  • 建设银行顺德分行网站开不锈钢公司怎么做网站
  • 自己如何建立网站做图文的网站
  • 六安做网站seo承德兴隆建设局网站
  • 软件企业公司网站模板网站建设菜单栏设计
  • 行业网站源码wordpress建博客
  • 最新网站建设视频网站服务器如何维护
  • 桂电做网站的毕设容易过嘛网站图文列表
  • 广州做网站建设的公司ss网站模板免费下载
  • 台州网站建设seo常州建设网站平台
  • 群辉做网站服务器配置网站建站系统
  • 辽宁建设厅网站首页杭州网站改版公司电话
  • 淄博网站建设同圈科技做外贸网站推广
  • 国家工程建设标准化网站ui作品集 网站怎么做
  • 佛山贸易网站建设品牌营销专业
  • 唐山企业网站建设公司长沙公共资源交易中心官网