当前位置: 首页 > news >正文

网站seo怎么优化银行服务外包公司排名

网站seo怎么优化,银行服务外包公司排名,做的网站怎么上线,商业类网站神经网络类似于人类大脑,是模拟生物神经网络进行信息处理的一种数学模型。它能解决分类、回归等问题,是机器学习的重要组成部分。量子神经网络是将量子理论与神经网络相结合而产生的一种新型计算模式。1995年美国路易斯安那州立大学KAK教授首次提出了量子…

        神经网络类似于人类大脑,是模拟生物神经网络进行信息处理的一种数学模型。它能解决分类、回归等问题,是机器学习的重要组成部分。量子神经网络是将量子理论与神经网络相结合而产生的一种新型计算模式。1995年美国路易斯安那州立大学KAK教授首次提出了量子神经计算的概念,开创了该领域的先河。随后又相继 出现了多种量子神经计算模型,包括量子感知机、量子神经网络、量子受限玻尔兹曼机等。近年来,量子生成对抗网络、量子卷积神经网络等量子机器学习模型。

        量子感知机算法,这与经典感知机的方法类似,在量子感知机中,规定输入样本x_{i}和权重系数w的元素只能为+-1。经典感知机中通过激活函数的输出判断输入样本是否被正确分类。而在量子算法中通过阈值\Theta将式写为

                                               y_{i}=\left\{\begin{matrix} 0, & |\sum_{j=0}^{M-1}\omega _{j}x_{ji} |\geq \Theta\\ 1, & |\sum_{j=0}^{M-1}\omega _{j}x_{ji} |\leq \Theta\\ \end{matrix}\right.                                             (1)

 

1.|\sum_{j=0}^{M-1}\omega _{j}x_{ji} |的计算方法 

        |\sum_{j=0}^{M-1}\omega _{j}x_{ji} |=|x_{i}^{T}\omega |,即x_{i}\omega的内积的模。在量子计算中,样本信息x_{i}和权重系数\omega存储在量子态中,归一化之后,x_{i}\omega的量子态形式为

                                                          |x_{i}\rangle =\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}x_{ji} |j\rangle                                               (2)

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​                          |w\rangle =\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}w_{j} |j\rangle                                                (3)

这里系数取\frac{1}{\sqrt{M}}是因为量子算法中x_{i}\omega内积的模为\frac{1}{M}|\sum_{j=0}^{M-1}\omega _{j}x_{ji} |

        假设存在酉算子U_{x_{i}}U_{w}能够完成如下变换:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​          ​​​​​​​       U_{x_{i}}|0\rangle^{\bigotimes }=\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}x_{ji} |j\rangle=|\Psi _{1i}\rangle                                (4)

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​           ​​​​​​​       U_{x_{i}}|1\rangle^{\bigotimes }=\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}w_{i} |j\rangle=|\Psi _{2}\rangle                                 (5)

式子中:m=logM

      则有 U^{-1}_{x_{i}}|\Psi _{2}\rangle=|1\rangle^{\bigotimes M },将|1\rangle^{\bigotimes M }写成十进制的形式有,U^{-1}_{x_{i}}|\Psi _{2}\rangle=|M-1\rangle

首先制备初态|0\rangle^{\bigotimes (m+1) },其中前m个量子比特用于存储输入样本向量x_{i}和权重\omega,最后一位是辅助量子比特,用于存储最终结果。

        第一步:使用酉算子U_{x_{i}}作用于前m个量子比特|0\rangle^{\bigotimes m },得到量子态

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​         ​​​​​​​               |\Psi _{1i}\rangle=\frac{1}{\sqrt{M}}\sum_{j=0}^{M-1}x_{ji} |j\rangle                                               (6)

        第二步:使用U_{w}^{-1}作用于|\Psi _{1i}\rangle得到量子态

                                                       |\Psi _{3\rangle=}U^{-1}_{x_{i}}|\Psi _{1i}\rangle=\sum_{j=0}^{M-1}c_{j} |j\rangle                                       (7)

式子中:\sum_{j=0}^{M-1}c_{j}^{2}=1

则                              \langle \Psi _{1i}|\Psi _{2}\rangle=\langle \Psi _{1i}|U_{w}U_{w}^{-1}|\Psi _{2}\rangle=\langle \Psi _{3}|M-1\rangle=c_{M-1}                  (8)              

#量子感知机
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, transpile
from qiskit_aer import Aer
import numpy as np
from qiskit.visualization import plot_histogramfrom math import pi
from qiskit.visualization import plot_histogramcircuit = QuantumCircuit(5,5)
#两控制位的受控z门
def ccz():circuit=QuantumCircuit(2)circuit.cz(0,1)circuit= circuit.to_gate()circuit.name = "ccz"c_U = circuit.control()return c_U
#两控制位的受控z门(与前一个的控制位不同)
def ccz1():circuit=QuantumCircuit(3)circuit.cz(0,2)circuit= circuit.to_gate()circuit.name = "ccz1"c_U = circuit.control()return c_U
#三控制位的受控z门
def cccz():circuit=QuantumCircuit(3)circuit.append(ccz(),[0]+[m+1 for m in range(2)])circuit= circuit.to_gate()circuit.name = "cccz"c_U = circuit.control()return c_U
#三控制位的受控x门
def cccx():circuit=QuantumCircuit(3)circuit.ccx(0,1,2)circuit= circuit.to_gate()circuit.name = "cccx"c_U = circuit.control()return c_U
#四控制位的受控x门
def ccccx():circuit=QuantumCircuit(4)circuit.append(cccx(),[0]+[m+1 for m in range(3)])circuit= circuit.to_gate()circuit.name = "ccccx"c_U = circuit.control()return c_U
#U_i
for i in range(4):circuit.h(i)
for i in range(3):circuit.z(i)
circuit.cz(1,2)
circuit.cz(0,2)
circuit.cz(0,1)
circuit.append(ccz(),[0]+[m+1 for m in range(2)])
#U_w
circuit.z(1)
circuit.z(2)
circuit.cz(1,3)
circuit.cz(0,2)
circuit.cz(0,1)
circuit.append(ccz(),[1]+[m+2 for m in range(2)])
circuit.append(ccz1(),[0]+[m+1 for m in range(3)])
circuit.append(cccz(),[0]+[m+1 for m in range(3)])
for i in range(4):circuit.h(i)
for i in range(4):circuit.x(i)
#将内积提取到辅助量子比特上
circuit.append(ccccx(),[0]+[m+1 for m in range(4)])
circuit.barrier()
circuit.measure(4,4)
circuit.draw(output='mpl', plot_barriers=False)

# Set up the backend
backend = Aer.get_backend('qasm_simulator')
# Transpile the circuit for the simulator
transpiled_circuit = transpile(circuit, backend)
# Run the transpiled circuit
job = backend.run(transpiled_circuit, shots=100000)
sim_result = job.result()
# Get and plot the results
measurement_result = sim_result.get_counts(circuit)
plot_histogram(measurement_result)

 

 1的概率为0.1376,开根号为0.370944,小于0.5,属于C_{2}

http://www.yayakq.cn/news/807051/

相关文章:

  • 建设部网站如何下载文件北京有多少家网站
  • 浙江省网站备案时间如何搭建高品质网站
  • 花都营销型网站网站建设预招标
  • 东莞网上推广江门站排名优化
  • 什么网站的新闻做参考文献装饰公司经营范围
  • 开发游戏app网站结构优化建议
  • 网站内容建设的建议珠海建站模板搭建
  • 成都网站建设好的公司网站设计技术大全
  • 做儿童成长相册模版网站深圳人社局官网登录入口
  • 怎么把网站扒下来手机商场网站制作
  • 怎么建论坛网站韩国有哪些专业做汽车的网站
  • 三亚按下了暂停键常州百度推广优化
  • 重庆建站程序如何做网站创业
  • 怎么搭建网站视频教程钢筋网片规格型号
  • 为古汉字老人做网站网站开发与维护书
  • 中国建设银行官网站招聘手机网站建设市场报价
  • 好的网站具备的条件垂直 网站开发
  • 海南住房和城乡建设厅网站登陆兼职刷客在哪个网站做
  • 烟台理工学校网站上海哪家公司做网站
  • 华为手机官方网站登录做网站流量赚钱
  • 网站版面风格电商运营工作很难做吗
  • 做seo要明白网站内容网站用哪些系统做的比较好
  • 网站推广方案途径网络营销推广策划书
  • 宣城网站开发wordpress 取中等大小
  • 百度云如何建设网站wordpress个人主页主题
  • 网站建设设计哪家好住房和城乡建设部政务服务门户
  • 做网站需要规划哪些内容网站手机优化显示
  • 做百度推广网站得多少钱写作网站设定
  • 网站广告案例如何查网站的备案信息
  • 做网站改字号代码做h游戏视频网站有哪些