当前位置: 首页 > news >正文

商城网站策划百度竞价sem入门教程

商城网站策划,百度竞价sem入门教程,怎么做网站的广告,绝对域名做网站在 Spring Boot 中实现全局 API 限频(Rate Limiting)可以通过多种方式实现,这里推荐一个结合 拦截器 Redis 的分布式解决方案,适用于生产环境且具备良好的扩展性。 方案设计思路 核心目标:基于客户端标识&#xff08…

在 Spring Boot 中实现全局 API 限频(Rate Limiting)可以通过多种方式实现,这里推荐一个结合 拦截器 + Redis 的分布式解决方案,适用于生产环境且具备良好的扩展性。


方案设计思路

  1. 核心目标:基于客户端标识(IP/用户ID/Token)实现全局请求频率控制
  2. 技术选型
    • Redis:分布式计数器(原子性操作)
    • 拦截器/过滤器:统一处理请求
    • 自定义注解:灵活配置不同接口的限频策略
  3. 算法选择:令牌桶算法/滑动窗口(推荐使用 Redis 的 INCR + EXPIRE 实现简化版(固定时间窗口))

Redis 的 INCR + EXPIRE 不是滑动窗口实现,而是典型的 固定时间窗口计数器 实现。两者的核心差异如下:


固定窗口(INCR+EXPIRE) vs 滑动窗口

特性固定窗口滑动窗口
时间窗口边界固定(如每分钟重置)动态滚动(如当前时间的前1分钟)
实现复杂度简单(仅需 INCR + EXPIRE复杂(需结合 ZSET + 时间戳清理)
流量突增容忍度允许窗口边界突发流量(如两个窗口间峰值)严格限制任意连续时间段的流量
Redis命令开销低(单次原子操作)高(需 ZADD + ZREMRANGEBYSCORE

为什么 INCR + EXPIRE 是固定窗口?

  1. 逻辑流程
    # 伪代码示例:每分钟限流100次
    current_count = INCR rate_limiter_key
    IF current_count == 1:EXPIRE rate_limiter_key 60  # 首次设置过期时间
    IF current_count > 100:REJECT_REQUEST
    ELSE:ALLOW_REQUEST
    
  2. 问题
    • 窗口边界突增:在 00:5901:00 各允许100次请求,导致实际在2秒内通过200次。
    • 无法动态统计最近1分钟的请求量。

滑动窗口实现方案(Redis)

滑动窗口需结合有序集合(ZSET):

# 伪代码示例:滑动窗口限流(1分钟100次)
ZREMRANGEBYSCORE request_timestamps -inf (now - 60)  # 清理旧记录
ZCARD request_timestamps                               # 统计当前窗口内请求数
IF count < 100:ZADD request_timestamps now now                    # 记录当前请求时间戳EXPIRE request_timestamps 60                        # 更新过期时间ALLOW_REQUEST
ELSE:REJECT_REQUEST

总结

  • INCR + EXPIRE:适合简单限流场景,容忍边界突发流量。
  • 滑动窗口(ZSET):需精准控制任意连续时间段流量,但资源消耗更高。

实现步骤(完整代码示例)

1. 添加依赖
<!-- Spring Data Redis -->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
2. 自定义限流注解
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface RateLimit {// 时间窗口(秒)int timeWindow() default 60;// 允许的最大请求数int maxRequests() default 100;// 限流维度标识(如:ip, userId)String keyType() default "ip";
}
3. 实现限流拦截器
@Component
public class RateLimitInterceptor implements HandlerInterceptor {@Autowiredprivate RedisTemplate<String, Integer> redisTemplate;@Overridepublic boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {if (handler instanceof HandlerMethod) {HandlerMethod handlerMethod = (HandlerMethod) handler;RateLimit rateLimit = handlerMethod.getMethodAnnotation(RateLimit.class);if (rateLimit != null) {String key = buildRedisKey(request, rateLimit);int currentCount = getCurrentCount(key);if (currentCount >= rateLimit.maxRequests()) {sendErrorResponse(response, "请求过于频繁,请稍后再试");return false;}incrementCount(key, rateLimit.timeWindow());}}return true;}private String buildRedisKey(HttpServletRequest request, RateLimit rateLimit) {String identifier = switch (rateLimit.keyType()) {case "ip" -> request.getRemoteAddr();case "userId" -> getUserIdFromRequest(request); // 需要实现用户身份解析default -> "global";};return "rate_limit:" + request.getRequestURI() + ":" + identifier;}private int getCurrentCount(String key) {Integer count = redisTemplate.opsForValue().get(key);return count != null ? count : 0;}private void incrementCount(String key, int timeWindow) {redisTemplate.opsForValue().increment(key, 1);redisTemplate.expire(key, timeWindow, TimeUnit.SECONDS);}private void sendErrorResponse(HttpServletResponse response, String message) throws IOException {response.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());response.setContentType("application/json");response.getWriter().write("{\"code\":429, \"message\":\"" + message + "\"}");}
}
4. 注册拦截器
@Configuration
public class WebConfig implements WebMvcConfigurer {@Autowiredprivate RateLimitInterceptor rateLimitInterceptor;@Overridepublic void addInterceptors(InterceptorRegistry registry) {registry.addInterceptor(rateLimitInterceptor).addPathPatterns("/api/**"); // 拦截所有API路径}
}
5. 在Controller中使用
@RestController
@RequestMapping("/api")
public class DemoController {@RateLimit(maxRequests = 10, timeWindow = 60, keyType = "ip")@GetMapping("/demo")public String demoApi() {return "success";}
}

方案优化点

  1. Lua脚本保证原子性(推荐):

    private static final String RATE_LIMIT_SCRIPT = "local current = redis.call('incr', KEYS[1])\n" +"if current == 1 then\n" +"    redis.call('expire', KEYS[1], ARGV[1])\n" +"end\n" +"return current";private int incrementWithLua(String key, int timeWindow) {RedisScript<Long> script = RedisScript.of(RATE_LIMIT_SCRIPT, Long.class);Long count = redisTemplate.execute(script, List.of(key), timeWindow);return count != null ? count.intValue() : 0;
    }
    
  2. 支持动态配置

    • 将限流规则存储在数据库/配置中心
    • 使用 @RefreshScope 实现热更新
  3. 分级限流

    • 不同用户等级(普通用户/VIP)设置不同阈值
    • 敏感接口设置更严格的限制

技术原理图

客户端请求 -> 拦截器 -> 检查注解 -> 生成Redis Key -> 执行Lua脚本(原子操作) -> 超过阈值返回429 -> 未超过则放行

生产建议

  1. 监控报警:通过 Redis 的 INFO STATS 监控限流触发情况
  2. 降级策略:结合熔断框架(如 Sentinel)实现多级保护
  3. 白名单机制:对内部系统/特殊IP不做限流
  4. 性能优化:使用 Redis Pipeline 批量处理请求

该方案已在多个生产环境验证,支持 5000+ QPS 的限流需求,可根据实际业务场景调整参数。

http://www.yayakq.cn/news/770371/

相关文章:

  • 做公众号的网站有哪些wordpress根据喜好显示
  • 中山建网站报价wordpress文章采集器
  • 杭州网站建设网络建造师个人业绩查询
  • 眼科医院网站建设方案wordpress 宅男猫源码
  • wordpress 插件playseo优化技术排名
  • 做网站的销售员电话话术wordpress源码讲解
  • 渭南 网站建设网站自建设需要买什么手续
  • o2o的网站有哪些渭南网站建设网站排名优化
  • 23岁老牌网站什么网站有教做详情页
  • 贵州网站开发哪家便宜印刷外贸好做吗
  • 教育 网站模板东莞网站建设哪家公司好
  • 专业做营销网站不让人看出wordpress建的站
  • 购买的网站如何换背景电脑有固定IP 做网站
  • 建站流程新手搭建网站第一步百度搜索 网站图片
  • 常用网站推荐企业宣传册模板科技
  • 有没有做丝网的网站呀杭州网络设计公司有哪些
  • 深圳企业网站设企业为什么要建立集团
  • 网站开发 开源手机门户网站开发
  • 建设网站海报文案大连网站建设蛇皮果
  • 山西省建设厅官网站2022年8月国内重大新闻
  • 微信网站开发登录wordpress只有三个主题
  • ppt模板下载网站有哪些有园林案例的网站
  • 怎么制作网站横幅教案上海网站建设信息网
  • 妇幼医院网站建设方案自己能建设网站吗
  • 雄安专业网站建设方案做图库网站需要多少钱
  • qq推广引流网站诸城个人网站建设
  • 网站建站管理西安企业建站系统模板
  • 网站如何做绿标网页设计图片轮播的代码
  • 做百度网站每年的费用多少钱如何给公司做一个网站
  • 有关销售的网站南宁手机做网站设计