当前位置: 首页 > news >正文

发布程序后网站有很多网页翻译软件哪个好

发布程序后网站有很多,网页翻译软件哪个好,重庆建设工程安全管理协会网站,浙江住房和城乡建设网前言 KNN算法是机器学习中较为简单的入门算法,其主要思想是选取k个与待预测点相近的数据,观察他们的类别,本着离谁近就更像谁的思路对于待预测点进行预测,本文将针对使用sklearn进行KNN算法的使用进行详解 数据预处理 在正式开…

前言

KNN算法是机器学习中较为简单的入门算法,其主要思想是选取k个与待预测点相近的数据,观察他们的类别,本着离谁近就更像谁的思路对于待预测点进行预测,本文将针对使用sklearn进行KNN算法的使用进行详解

数据预处理

在正式开始之前,我们先要进行数据预处理
数据预处理有两种常见的方式,MinMaxScaler和StandardScaler
MinMaxScaler: 𝑋=𝑋−𝑚𝑎𝑥(𝑋)𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)𝑋=\frac{𝑋−𝑚𝑎𝑥(𝑋)}{𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)}X=max(X)min(X)Xmax(X)

StandardScaler: 𝑋=𝑋−𝑚𝑒𝑎𝑛(𝑋)𝑠𝑡𝑑(𝑋)𝑋=\frac{𝑋−𝑚𝑒𝑎𝑛(𝑋)}{𝑠𝑡𝑑(𝑋)}X=std(X)Xmean(X)

from sklearn.preprocessing import MinMaxScaler, StandardScalerminmaxscaler = MinMaxScaler() 
standardscaler = StandardScaler()

鸢尾花数据集

从sklearn.datasets中我们可以加载一些数据集,其中包含鸢尾花数据集

from sklearn import datasets
​
# 加载数据集
iris = datasets.load_iris()
X = iris.data[:,2:] # 这里为了画图方便,只取最后两个维度的信息
y = iris.target # 数据标签
X.shape, y.shape

((150, 2), (150,))

模型训练

从sklearn.neighbors我们引出KNeighborsClassifier分类器,直接调用KNN算法进行训练,我们在数据加载时选用sklearn.model_selection中提供的train_test_split来直接划分数据集

from sklearn.neighbors import KNeighborsClassifier  
from sklearn.model_selection import train_test_split 
​
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 
# 以20%作为测试数据,随机数为42进行随机选取数据
​
X_train_std = standardscaler.fit_transform(X_train) # 数据预处理
X_test_std = standardscaler.fit_transform(X_test) # 数据预处理# 实例化k值为3的knn模型,即n_neighbors=3,即选取最近的三个临近的点
knn_clf = KNeighborsClassifier(n_neighbors=3)  
knn_clf.fit(X_train_std, y_train)
knn_clf.score(X_test_std, y_test)

1.0

超参数选择

k值

对于KNN任务来讲,k值越小越容易过拟合,k值越大越容易欠拟合,所以对于k值的选用要特别注意
绘制子图
我们在这里编写了一个函数来绘制我们用于测试k值时需要画的图

def plot_decision_boundary(model,k, sub, X, y):# 用于画图的函数x0_min, x0_max = X[:,0].min()-1, X[:,0].max()+1 # 获取x0最小值和最大值x1_min, x1_max = X[:,1].min()-1, X[:,0].max()+1 # 获取x1最小值和最大值x0, x1 = np.meshgrid(np.linspace(x0_min, x0_max, 100), np.linspace(x1_min, x1_max, 100))  # 以x0和x1的最小值和最大值生成100个二维网格数据Z = model.predict(np.c_[x0.ravel(), x1.ravel()]) # 对生成的数据进行预测Z = Z.reshape(x0.shape)# plt.contourf是用来绘制等高线的函数,给定二维坐标和高度值可以画出等高线,x0, x1为二维坐标,Z为高度plt.subplot(sub[0], sub[1], sub[2])  # 绘制子图plt.contourf(x0, x1, Z, cmap=plt.cm.Spectral) # 预测数据的等高线plt.ylabel("x1")plt.xlabel("x0")plt.xticks([])plt.yticks([])plt.title('k={:d}'.format(k))plt.scatter(X[:,0], X[:,1],c=np.squeeze(y))  # 原数据

选择不同的k值并画图

for k in range(1, 90, 10):knn_clf = KNeighborsClassifier(n_neighbors=k)  # 选择不同的k值knn_clf.fit(X_train_std, y_train)plot_decision_boundary(knn_clf, k, (3, 3, k // 10+1), X_train_std, y_train)
plt.show()

在这里插入图片描述

其他参数

我们可以通过help来获取knn分类器的其他参数

help(knn_clf) # 查看KNN分类器的参数

可以看到Parameters下全是参数以及可选范围的介绍,我们随便选用几个进行尝试
在这里插入图片描述

网格搜索

由于每个参数及其组合我们一个个的去试效率太低,所以我们使用网格搜索来进行,我们在前面使用help已经知道了分类器的参数以及可选的值了,这里我们只需要先设置一个由字典组成的列表并将他和模型一起传到GridSearchCV的实例化中再次进行GridSearchCV的训练就可以得到最佳参数了,在由字典组成的列表中,每一个字典是选用不同的参数组合,字典的key是参数名,字典的value是要进行网格搜索的值,这里的值一定要满足help中规定的值

from sklearn.model_selection import GridSearchCV
​
# 使用网格搜索寻找最佳参数
param_grid=[{'weights':['uniform'],'n_neighbors':list(range(1, 11))},{'weights':['distance'],'n_neighbors':list(range(1, 11)),'p':list(range(1, 6))}
]
​
knn_clf = KNeighborsClassifier()
grid_search = GridSearchCV(knn_clf, param_grid)
grid_search.fit(X_train, y_train)
GridSearchCV

在这里插入图片描述

最佳准确率

grid_search.best_score_  # 最好的准确率是0.9583333333333334

0.9583333333333334

最佳参数

grid_search.best_params_  # 最好准确率对应的参数是{'n_neighbors': 1, 'weights': 'uniform'}

{‘n_neighbors’: 1, ‘weights’: ‘uniform’}

http://www.yayakq.cn/news/502329/

相关文章:

  • 网站平台建设的流程wordpress通过标题调用相关文章
  • 如何做网站网站的教程wordpress 插件语言包
  • 网站备案幕布多少钱淘宝网站开发
  • 遵义网站建设制作商标网官网
  • 昆明网站建设搜王道下拉惠州哪个房地产网站做的比较好
  • 好好建站德国网站的后缀名
  • 深圳网站建设信科公司便宜什么网站可以用手机做兼职赚钱吗
  • 深圳中小型网站建设公司wordpress 双陈
  • 维修网站建设dedecms手机网站仿制
  • 网站建设的定位是什么秦皇岛网站制作微商城建设
  • 个人公众号做电影网站简洁的网站模板
  • 专门做潮搭的网站怎样把自己的网站进行推广
  • 网站运营托管方案51个人空间相册
  • 快件网站建设建立html网站
  • 比较商务网站的营销策略做的好的c2c网站
  • 多肉建设网站前的市场分析app推广之家
  • seo任务优化网站排名网站架构设计图怎么做
  • 郴州网站建设公司官网2024年的新闻
  • 温州专业营销网站公司无印良品vi设计手册
  • 网站建设全部流程包括备案wordpress微信快捷支付宝
  • 哪个网站可以做曝光台wordpress翻页图片效果
  • 网站富文本的内容怎么做网站建设与运营的论文的范本
  • 泰安百度做网站的php网站开发目录
  • 网站建设方案的所属行业是什么是网络营销的职能
  • 公司网站建设推荐wordpress漏洞视频
  • 合肥市有做网站的公司吗网站管理助手 二级域名
  • 网站开发外包 价格公司部门祝福语
  • 免费企业建站wordpress统计类插件
  • 什么网站可以做网站网站备案怎么改
  • 网站设计北京新seo网站关键词优化哪家好