当前位置: 首页 > news >正文

公众号与网站专门做美妆的网站

公众号与网站,专门做美妆的网站,网站针对爬虫爬取做的优化,企业网站建设 新闻宣传【欢迎关注编码小哥,学习更多实用的编程方法和技巧】 1、基本方法---线性变换 // 亮度和对比度调整 cv::Mat adjustBrightnessContrast(const cv::Mat& src, double alpha, int beta) {cv::Mat dst;src.convertTo(dst, -1, alpha, beta);return dst; }// 使用…

【欢迎关注编码小哥,学习更多实用的编程方法和技巧】

1、基本方法---线性变换

// 亮度和对比度调整
cv::Mat adjustBrightnessContrast(const cv::Mat& src, double alpha, int beta) {cv::Mat dst;src.convertTo(dst, -1, alpha, beta);return dst;
}// 使用示例
cv::Mat image = cv::imread("image.jpg");
cv::Mat brightened = adjustBrightnessContrast(image, 1.0, 50);   // 增加亮度
cv::Mat darkened = adjustBrightnessContrast(image, 1.0, -50);    // 降低亮度
cv::Mat increased_contrast = adjustBrightnessContrast(image, 1.5, 0);  // 增加对比度

2、通道分离调整

cv::Mat adjustChannelBrightness(const cv::Mat& src) {// 分离BGR通道std::vector<cv::Mat> channels;cv::split(src, channels);// 调整蓝色通道亮度channels[0] = channels[0] * 1.2 + 30;// 重新合并通道cv::Mat result;cv::merge(channels, result);return result;
}

3、查找表方法

cv::Mat createBrightnessLUT(double contrast, int brightness) {cv::Mat lookupTable(1, 256, CV_8U);uchar* lut = lookupTable.ptr();for (int i = 0; i < 256; i++) {// 对比度和亮度调整公式lut[i] = cv::saturate_cast<uchar>(contrast * i + brightness);}return lookupTable;
}// 应用LUT
cv::Mat applyLUTAdjustment(const cv::Mat& src, double contrast, int brightness) {cv::Mat lookupTable = createBrightnessLUT(contrast, brightness);cv::Mat result;cv::LUT(src, lookupTable, result);return result;
}

4、高级对比度增强

cv::Mat enhanceContrast(const cv::Mat& src) {cv::Mat dst;// 直方图均衡化if (src.channels() == 1) {// 灰度图cv::equalizeHist(src, dst);} else {// 彩色图转换到YUV空间cv::Mat yuv;cv::cvtColor(src, yuv, cv::COLOR_BGR2YUV);// 仅均衡化亮度通道std::vector<cv::Mat> channels;cv::split(yuv, channels);cv::equalizeHist(channels[0], channels[0]);// 合并通道cv::merge(channels, yuv);cv::cvtColor(yuv, dst, cv::COLOR_YUV2BGR);}return dst;
}

5、伽马校正 

cv::Mat gammaCorrection(const cv::Mat& src, double gamma = 1.0) {cv::Mat dst;// 归一化cv::Mat normalized;src.convertTo(normalized, CV_32F, 1.0/255);// 伽马变换cv::pow(normalized, gamma, dst);// 还原到0-255dst = dst * 255;dst.convertTo(dst, CV_8U);return dst;
}// 使用示例
cv::Mat gammaEnhanced1 = gammaCorrection(image, 0.5);  // 变亮
cv::Mat gammaEnhanced2 = gammaCorrection(image, 2.0);  // 变暗

6、自适应对比度增强 

cv::Mat adaptiveContrastEnhancement(const cv::Mat& src) {cv::Mat lab;cv::cvtColor(src, lab, cv::COLOR_BGR2Lab);// 分离通道std::vector<cv::Mat> channels;cv::split(lab, channels);// 限制对比度自适应直方图均衡化(CLAHE)cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(2.0, cv::Size(8, 8));clahe->apply(channels[0], channels[0]);// 合并通道cv::merge(channels, lab);cv::Mat result;cv::cvtColor(lab, result, cv::COLOR_Lab2BGR);return result;
}

7、通用图像增强类 

class ImageEnhancer {
private:cv::Mat image;public:ImageEnhancer(const cv::Mat& src) : image(src.clone()) {}// 线性变换cv::Mat linearTransform(double contrast = 1.0, int brightness = 0) {cv::Mat dst;image.convertTo(dst, -1, contrast, brightness);return dst;}// 伽马校正cv::Mat gammaCorrection(double gamma = 1.0) {cv::Mat normalized, corrected;image.convertTo(normalized, CV_32F, 1.0/255);cv::pow(normalized, gamma, corrected);corrected = corrected * 255;cv::Mat result;corrected.convertTo(result, CV_8U);return result;}// 自适应对比度增强cv::Mat adaptiveCLAHE() {cv::Mat lab;cv::cvtColor(image, lab, cv::COLOR_BGR2Lab);std::vector<cv::Mat> channels;cv::split(lab, channels);cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(2.0, cv::Size(8, 8));clahe->apply(channels[0], channels[0]);cv::merge(channels, lab);cv::Mat result;cv::cvtColor(lab, result, cv::COLOR_Lab2BGR);return result;}
};// 使用示例
cv::Mat image = cv::imread("image.jpg");
ImageEnhancer enhancer(image);cv::Mat brightened = enhancer.linearTransform(1.0, 50);
cv::Mat gammaEnhanced = enhancer.gammaCorrection(0.5);
cv::Mat adaptiveEnhanced = enhancer.adaptiveCLAHE();

8、完整示例

int main() {// 读取图像cv::Mat image = cv::imread("image.jpg");// 创建增强器ImageEnhancer enhancer(image);// 多种增强方法cv::Mat result1 = enhancer.linearTransform(1.2, 30);  // 增加亮度和对比度cv::Mat result2 = enhancer.gammaCorrection(0.8);  // 伽马校正cv::Mat result3 = enhancer.adaptiveCLAHE();  // 自适应对比度增强// 显示结果cv::imshow("Original", image);cv::imshow("Brightened and Enhanced", result1);cv::imshow("Gamma Corrected", result2);cv::imshow("Adaptive CLAHE", result3);cv::waitKey(0);return 0;
}

注意事项

  1. 使用cv::saturate_cast防止溢出
  2. 注意数据类型转换
  3. 考虑图像通道数
  4. 处理边界情况
  5. 性能优化

性能建议

  • 使用cv::Mat操作替代逐像素遍历
  • 利用OpenCV的矩阵运算
  • 对于大图像,考虑并行处理
  • 使用cv::cuda进行GPU加速
http://www.yayakq.cn/news/881147/

相关文章:

  • 制作网页的网站推荐视频号广告推广
  • 免费中英文网站源码高佣联盟做成网站怎么做
  • 电子商务网站设计与开发案例教程电子贺卡制作软件app
  • 网站如何添加认证联盟商场设计与商品陈列
  • 网站顶部地图代码怎么做的耒阳市建设局网站
  • 合肥建设网站公司安徽建设工程有限公司
  • 苏州专业高端网站建设机构做商城外贸网站
  • 专门做宠物食品的网站做暖暖免费视频网站
  • archigo建筑网站阿里企业邮箱后缀
  • 网站开发可以自学吗给周杰伦做网站
  • 网站怎么做弹窗网站设计与开发期末考试题
  • 如何制作自己的网站 可放广告wordpress横向导航
  • 衡水市住房和城乡建设局网站阿里云服务器可以做彩票网站吗
  • 合肥生态丽景网站建设网页设计师考试
  • 阜阳网站开发自己做一个网站一年的费用
  • 长沙制作公园仿竹围栏哪家便宜常州网站制作优化
  • 徐州网站建设哪家专业在线做六级阅读网站
  • 福建福清市住房和建设局网站外贸做中英文网站
  • 医院网站解决方案微商代运营
  • 网站的建设特色WordPress小程序论坛
  • 彩投网站建设中英文切换网站开发
  • 网站建设怎么谈wordpress设置收费下载
  • wap网站域名申请wordpress 首页显示全文
  • 黄岩城市建设发展集团网站wordpress页面背景图片
  • php网站开发发展趋势wordpress html 单页
  • 做彩票网站技术网站对域名
  • 外边做一个网站要多少钱百度网站抓取时间查询
  • 网站建设又叫什么专业营销网站开发
  • 湛江市律师网站建设品牌北京市基础建设质量监督局网站
  • 制造网站开发教学网站模板