当前位置: 首页 > news >正文

国际网站设计做奢侈品回收网站特点

国际网站设计,做奢侈品回收网站特点,wordpress 模板 制作,wordpress微信快捷支付宝Softmax 回归 损失函数 图片分类数据集 1 softmax2 损失函数1均方L1LossHuber Loss 3 图像分类数据集4 softmax回归的从零开始实现 1 softmax Softmax是一个常用于机器学习和深度学习中的激活函数。它通常用于多分类问题,将一个实数向量转换为概率分布。Softmax函…

Softmax 回归 + 损失函数 + 图片分类数据集

  • 1 softmax
  • 2 损失函数
    • 1均方
    • L1Loss
    • Huber Loss
  • 3 图像分类数据集
  • 4 softmax回归的从零开始实现

1 softmax

Softmax是一个常用于机器学习和深度学习中的激活函数。它通常用于多分类问题,将一个实数向量转换为概率分布。Softmax函数常用于多类别分类问题,其中模型需要为每个类别分配一个概率,以便选择最有可能的类别。在深度学习的神经网络中,Softmax通常作为输出层的激活函数。oftmax函数在多分类问题中常用于神经网络的输出层,其主要作用是将神经元的输出转化为概率分布,使得每个类别的输出值都在0到1之间,并且所有类别的输出值之和为1。这种转换有助于我们理解和解释模型的预测结果,知道每个类别的预测概率。

然而,softmax函数通常并不与其他常见的激活函数(如sigmoid、ReLU等)一起用在同一个网络层。这是因为softmax函数本身就是一种特殊的激活函数,专门用于处理多分类问题的输出。它已经在输出层完成了将输出值转换为概率分布的任务,因此不需要再与其他激活函数一起使用。

在神经网络的其他层,我们可能会使用其他的激活函数,如ReLU、sigmoid等,来增加网络的非线性特性,提高网络的表达能力。但在输出层,当我们需要得到每个类别的预测概率时,就会使用softmax函数。

所以,softmax函数并不经常和其他激活函数一起用在同一个网络层,而是在特定的输出层中使用,用于将输出转换为概率分布。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

叉熵损失函数(Cross-Entropy Loss)是在分类问题中常用的损失函数,特别是在深度学习任务中。它用于衡量模型的输出概率分布与实际标签之间的差异。
在深度学习中,通常使用梯度下降等优化算法来最小化交叉熵损失,从而使模型的预测逼近实际标签。交叉熵损失对于分类问题而言,是一种常见且有效的选择,尤其与softmax激活函数结合使用,因为它可以自然地惩罚模型对正确类别的不确定性。
在这里插入图片描述

2 损失函数

函数(Loss Function)是在机器学习中用来衡量模型预测与实际目标之间差异的函数。它是优化算法的核心组成部分,帮助模型学习从输入到输出的映射,并调整模型参数以最小化预测错误。
选择合适的损失函数取决于任务的性质,例如回归、分类、多类别分类等。正确选择损失函数有助于模型更好地学习数据的特征,提高其性能。
在训练过程中,模型的目标是最小化损失函数的值。损失函数通常是一个标量,表示模型对于给定样本或一批样本的性能表现。常见的损失函数包括:

1均方

在这里插入图片描述

L1Loss

在这里插入图片描述

Huber Loss

在这里插入图片描述
其他:
在这里插入图片描述

3 图像分类数据集

MNIST数据集是图像分类中广泛使用的数据集之一,但作为基准数据集过于简单。我们将使用类似但更复杂的Fashion-MNIST数据集
MNIST(Modified National Institute of Standards and Technology)是一个常用的手写数字识别数据集,被广泛用于测试和验证机器学习模型的性能。该数据集包含了大量的手写数字图像,涵盖了数字 0 到 9。

图像大小: 所有的图像都是28x28像素的灰度图像。

样本类别: 数据集包含 10 个类别,分别对应数字 0 到 9。

训练集和测试集: MNIST数据集通常被分为训练集和测试集,以便在模型训练和评估时使用。通常,60,000张图像用于训练,10,000张图像用于测试。

标签: 每个图像都有相应的标签,表示图像中的数字。

应用场景: MNIST数据集通常用于学术研究、演示和教学,尤其是对于深度学习初学者。它被认为是计算机视觉领域中的 “Hello World”,因为它是一个相对简单但足够复杂的问题,可以用于验证和比较不同模型的性能。

挑战性: 尽管MNIST数据集相对较小,但由于其广泛使用,它已经成为测试新模型和算法性能的标准基准之一。

在使用MNIST数据集时,研究人员和开发者通常尝试构建模型,以准确地识别手写数字。这种任务是一个经典的图像分类问题,可以使用各种深度学习模型,如卷积神经网络(CNN),来解决。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

数据读取速度要比模型训练速度块。
在这里插入图片描述
在这里插入图片描述

4 softmax回归的从零开始实现

http://www.yayakq.cn/news/498249/

相关文章:

  • 网站内如何@深圳营销网站
  • 15年做那个网站致富企业网站开发意义
  • wordpress如何把文件添加到媒体库网站做了泛解析 为什么影响seo
  • 龙岩做网站的地方wordpress采集
  • 网站改版会影响收录吗湖州 网站建设
  • 辽宁省建设监理协会网站公司建设网站的请示
  • 泉州模板建站定制百度云链接
  • 电商网站开发简历上海劳务派遣公司
  • 怎么向百度提交网站黄岛网站建设公司哪家好
  • 海口网站建设开发用服务器ip怎么做网站
  • wordpress制作单页网站导航页面开网店需要准备什么资料
  • 手表网站建设策划书企业网站的建立与维护论文
  • 天津建站软件网匠网站建设有限公司
  • 计算机多媒体毕业设计网站建设郑州知名做网站
  • 商务网站开发的工作任务官方网站aspcms
  • 如何在百度上为企业做网站莆田做外贸网站
  • tool站长工具PHP网站开发有哪些框架
  • 广州网站建设流程国内打开google网页的方法
  • 酒店网站源码杭州app开发公司集中
  • 网页设计与制作教程第五版课后答案裤子seo标题优化关键词
  • 建设银行住房贷款网站网站建设文本
  • 做营销型网站价格湘阴网页定制
  • 建个人网站网络推广思路
  • 给小公司做网站赚钱吗邯郸招聘信息最新招聘
  • 做招商加盟网站网络营销模式下品牌推广研究
  • 学做室内效果图的网站标志设计课件
  • 产品网站做营销推广惠州注册公司流程和费用
  • 上海站有云网络科技有限公司装修图片大全
  • 上海建设局网站网站建 设方案说明书
  • 网站水印设置作教程苏州智能网站建设