当前位置: 首页 > news >正文

网站html模板免费下载宁波网站建设rswl

网站html模板免费下载,宁波网站建设rswl,漯河建设企业网站,wordpress 评论页面Python是一种广泛使用的解释型、高级和通用的编程语言,众多的开源科学计算软件包都提供了Python接口,如计算机视觉库OpenCV、可视化工具库VTK等。Python专用计算扩展库,如NumPy、SciPy、matplotlab、Pandas、scikit-learn等。 开发工具上可用…

Python是一种广泛使用的解释型、高级和通用的编程语言,众多的开源科学计算软件包都提供了Python接口,如计算机视觉库OpenCV、可视化工具库VTK等。Python专用计算扩展库,如NumPy、SciPy、matplotlab、Pandas、scikit-learn等。

开发工具上可用Spyder,在安装Anaconda时已经安装好,可以从开始菜单或者使用命令行spyder启动。Spyder是一个免费、开源的集成开发环境,用Python编写,用于Python程序的开发,由科学家、工程师和数据分析师设计。它综合开发工具的高级编辑、分析、调试和分析功能与科学软件包的数据探索、交互执行、深入检查和漂亮的可视化功能独特地结合在一起。可以单步执行,查看运行后的各变量的值,查看序列数据线图等,非常方便。其他的集成开发工具(IDE)还包括:

VisualStudioCode(简称VSCode)是一款由微软开发且跨平台的免费源代码编辑器。该软件支持语法高亮、代码自动补全(又称IntelliSense)、代码重构功能,并且内置了命令行工具和Git版本控制系统。用户可以更改主题和键盘快捷方式实现个性化设置,也可以通过内置的扩展程序商店安装扩展以拓展软件功能。VisualStudioCode默认支持非常多的编程语言,要使用Python进行开发,需要先安装相应的Python扩展(PythonextensionforVisualStudioCode)。

PyCharm,主要用于Python语言开发,由捷克公司JetBrains开发,提供代码分析、图形化调试器,集成测试器、集成版本控制系统,并支持使用Django进行网页开发。PyCharm是一个跨平台开发环境,拥有MicrosoftWindows、macOS和Linux版本。社区版在Apache许可证下发布,另外还有专业版在专用许可证下发布,其拥有许多额外功能。

本项目采用Python语言进行简单的信号处理(包络谱,低通、高通、带通滤波,初级特征提取,机器学习,短时傅里叶变换)及轴承故障诊断探索。

n_win_numb = 128;n_win = np.hamming(n_win_numb);n_overlap = 127;nfft = n_win_numb;pad_to = nfft*10;
plt.figure(figsize=(8,6))plt.specgram(y, NFFT = nfft, Fs = fs, window = n_win, noverlap = n_overlap, pad_to=pad_to);plt.title(['Increasing Win Overlap: win=',n_win_numb,' / overlap=',n_overlap, ' / nfft=',nfft, 'pad_to=',pad_to]);plt.xlabel('time(s)');plt.ylabel('freq(Hz)')

图片

n_win_numb = 32;n_win = np.hamming(n_win_numb);n_overlap = 0;nfft = n_win_numb;
plt.figure(figsize=(8,6))plt.specgram(y, NFFT = nfft, Fs = fs, window = n_win, noverlap = n_overlap);plt.title(['Increasing Win Overlap: win=',n_win_numb,' / overlap=',n_overlap, ' / nfft=',nfft]);plt.xlabel('time(s)');plt.ylabel('freq(Hz)')

图片

n_win_numb = 32;n_win = np.hamming(n_win_numb);n_overlap = 30;nfft = n_win_numb;pad_to = nfft*10;
plt.figure(figsize=(8,6))plt.specgram(y, NFFT = nfft, Fs = fs, window = n_win, noverlap = n_overlap, pad_to=pad_to);plt.title(['Increasing Win Overlap: win=',n_win_numb,' / overlap=',n_overlap, ' / nfft=',nfft, 'pad_to=',pad_to]);plt.xlabel('time(s)');plt.ylabel('freq(Hz)')

图片

n_win_numb = 256;n_win = np.hamming(n_win_numb);n_overlap = 250;nfft = n_win_numb;
plt.figure(figsize=(8,6))plt.specgram(y, NFFT = nfft, Fs = fs, window = n_win, noverlap = n_overlap);plt.title(['Increasing Win Overlap: win=',n_win_numb,' / overlap=',n_overlap, ' / nfft=',nfft]);plt.xlabel('time(s)');plt.ylabel('freq(Hz)')

图片

fig = plt.figure(figsize=(12,8))ax = Axes3D(fig,azim=-0.001,elev=80)plt.ylabel('Frequency');plt.xlabel('Div #')for x, y, z, c in zip(plot_x.T, plot_y.T, A_div.T, colors):    ax.plot3D(y,x,z,color=c, linewidth=0.5)plt.gca().invert_xaxis()

图片

colors = cm.rainbow(np.linspace(0, 1, len(plot_y)))
fig = plt.figure(figsize=(12,8))ax = Axes3D(fig,azim=-0.001,elev=85)plt.ylabel('Time (s)');plt.xlabel('Div #')for x, y, z, c in zip(plot_x.T, plot_y.T, y_div.T, colors):    ax.plot3D(y,x,z,color=c, linewidth=0.7)plt.gca().invert_xaxis()

图片

feature_n_mean = np.mean(feature_n,axis=0)feature_f_mean = np.mean(feature_f,axis=0plt.figure(figsize=(8,6))plt.plot(feature_n_mean,'-bo')plt.plot(feature_f_mean,'-rx')plt.title('Average of Features')plt.xticks(np.arange(0,np.size(feature_name)),feature_name,rotation='vertical');plt.show()

图片

from lightgbm import LGBMClassifier, plot_importance
n_estimator = 100
colsample_bytree = 0.1model = LGBMClassifier(n_estimator=n_estimator,colsample_bytree = colsample_bytree)
model.fit(x_train, y_train)
y_test_pred = model.predict(x_test)
importance = model.feature_importances_plt.figure(figsize=(4,4))
cm = pd.DataFrame(confusion_matrix(y_test, y_test_pred))
sns.heatmap(cm, annot=True)plt.figure(figsize=(8,6))
plt.plot(importance,'-ko')
plt.xticks(np.arange(0,np.size(feature_name)),feature_name,rotation='vertical');fig,ax = plt.subplots()
plot_importance(model,ax=ax)print(model.score(x_test, y_test))
# print(metrics(y_test,y_test_pred))
plt.figure(figsize=(8,6))
plt.figure(figsize=(8,6))
z_ML_utils.plot_decision_boundaries(x,y,XGBClassifier, idx1=idx1, idx2=idx2, n_estimator=n_estimator,colsample_bytree = colsample_bytree)
完整的项目代码:https://mbd.pub/o/bread/Y5yXmJtt
 

图片

图片

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

http://www.yayakq.cn/news/463852/

相关文章:

  • 贵州两学一做专题网站外贸商城 网站建设
  • 分享网站排名秦皇岛网站推广报价
  • 郑州建材网站建设广东备案网站
  • 深圳企业网站建设服务哪家公司好网站备案被注销了怎么办
  • cgi做的网站做软件常用的网站有哪些
  • 南昌网站做道客网站建设推广
  • 廊坊企业自助建站wordpress 更好的主题
  • 外贸业务怎么利用网站开发客户dell公司网站设计特色
  • 网站建设的基本条件app和手机网站的区别
  • 制作一个网站多少钱网站开发 简单留言板
  • 广州专业网站改版方案权威的企业网站建设
  • 关于做网站的总结百度竞价推广课程
  • 无锡画室网站建设c 网站开发人员工具
  • 工装设计方案网站做公司网站
  • 怎么给网站做快照夜晚必备的直播软件
  • 安庆网站建设兼职网站的制作方法
  • 大型网站建设制作公司中国医院建设协会网站
  • 建设网站需要多少钱视频号分销解决方案的特点
  • 网站外包一般多少钱啊云南省公共资源交易中心
  • 联邦快递网站建设的目标上海公司注册网站
  • 自己的电脑做服务器 并建网站ipv6网站如何做
  • 广州 网站建设公司做seo推广网站
  • 石岩附近做网站公司html编辑器在哪里
  • 企业网站备案条件最专业的网站设计
  • 做网站推广有用不惠州公众号开发公司
  • 服装电子商务网站建设广东网站设计公司电话
  • 网站规划设计报告怎么做网站充值网站
  • 做h网站怎么才能安全邯郸市旅游景点有哪些
  • 免费软件制作网站模板公司网站修改 优帮云
  • 中国大唐集团公司招聘网站湖南株洲静默