当前位置: 首页 > news >正文

做吃的教程网站网站浮动窗口怎么设置

做吃的教程网站,网站浮动窗口怎么设置,设计制作活动,凡科网站怎么做建站🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人! 🌙个人主页:阿芒的主页 ⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学…

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

文章目录

  • 向量的数量积
  • 向量的向量积

向量的数量积

  1. 定义:

设向量a→\overrightarrow{a}a,b→\overrightarrow{b}b的夹角为θ\thetaθ,称
∣a→∣∣b→∣cos|\overrightarrow{a}||\overrightarrow{b}|cosa∣∣bcos θ\thetaθ记作a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}aba→\overrightarrow{a}ab→\overrightarrow{b}b数量积(点积、内积)

  1. 性质

(1)a→⋅a→\overrightarrow{a}\cdot\overrightarrow{a}aa=∣a→∣2|\overrightarrow{a}|^{2}a2
(2)a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量,则有a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=0⟺\Longleftrightarrowa→⊥b→\overrightarrow{a}\bot\overrightarrow{b}ab

注:由于零向量的方向是任意的,所有规定零向量与任何向量都垂直.

  1. 运算规律

(1)交换律:a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=b→⋅a→\overrightarrow{b}\cdot\overrightarrow{a}ba
(2)结合律:(λa→)⋅b→(\lambda\overrightarrow{a})\cdot\overrightarrow{b}(λa)b=a→⋅(λb→)\overrightarrow{a}\cdot(\lambda\overrightarrow{b})a(λb)=λ(a→⋅b→)\lambda(\overrightarrow{a}\cdot\overrightarrow{b})λ(ab)
~~~~~~~~~~~~~~~~~                 (λa→)⋅(μb→)(\lambda\overrightarrow{a})\cdot(\mu\overrightarrow{b})(λa)(μb)=λ(a→⋅(λb→))\lambda(\overrightarrow{a}\cdot(\lambda\overrightarrow{b}))λ(a(λb))=λμ(a→⋅b→)\lambda\mu(\overrightarrow{a}\cdot\overrightarrow{b})λμ(ab)(其中λ,μ\lambda,\muλμ为实数)
(3)分配律:(a→+b→)⋅c→(\overrightarrow{a}+\overrightarrow{b})\cdot\overrightarrow{c}(a+b)c=a→⋅c→\overrightarrow{a}\cdot\overrightarrow{c}ac+b→⋅c→\overrightarrow{b}\cdot\overrightarrow{c}bc

  1. 坐标表示
  • a→\overrightarrow{a}a=axi→+ayj→+azk→a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k}axi+ayj+azk,b→\overrightarrow{b}b=bxi→+byj→+bzk→b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k}bxi+byj+bzk,则
    a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=axbx+ayby+azbza_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}axbx+ayby+azbz

  • 两向量夹角公式
    a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量时,由于a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=∣a→∣∣b→∣cos|\overrightarrow{a}||\overrightarrow{b}|cosa∣∣bcos θ\thetaθ,从而
    cosθcos\thetacosθ= a→⋅b→∣a→∣∣b→∣\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}a∣∣bab=axbx+ayby+azbzax2+ay2+az2bx2+by2+bz2\frac{a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}}{ \sqrt{a^{2}_{x}+a^{2}_{y}+a^{2}_{z} }\sqrt{b^{2}_{x}+b^{2}_{y}+b^{2}_{z} }}ax2+ay2+az2bx2+by2+bz2axbx+ayby+azbz

  • 两向量垂直的充要条件
    a→⊥b→\overrightarrow{a}\bot\overrightarrow{b}ab⟺\Longleftrightarrowaxbx+ayby+azbz=0a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}=0axbx+ayby+azbz=0


向量的向量积

  1. 定义

设向量a→\overrightarrow{a}a,b→\overrightarrow{b}b的夹角为θ\thetaθ,定义
向量c→\overrightarrow{c}c:①方向:c→⊥a→\overrightarrow{c}\bot\overrightarrow{a}ca,c→⊥b→\overrightarrow{c}\bot\overrightarrow{b}cb且符合右手规则
~~~~~~~~~~~~~              ②模:∣c→∣|\overrightarrow{c}|c=∣a→∣∣b→∣sin|\overrightarrow{a}||\overrightarrow{b}|sina∣∣bsin θ\thetaθ
c→\overrightarrow{c}ca→与b→\overrightarrow{a}与\overrightarrow{b}ab为的向量积(叉积),记作c→\overrightarrow{c}c=a→×b→\overrightarrow{a}×\overrightarrow{b}a×b

  1. 性质

(1)a→×a→\overrightarrow{a}×\overrightarrow{a}a×a=0→\overrightarrow{0}0
(2)a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量,则有a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=0⟺\Longleftrightarrowa→∥b→\overrightarrow{a}\parallel\overrightarrow{b}ab

  1. 运算规律

(1)a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=-b→×a→\overrightarrow{b}×\overrightarrow{a}b×a
(2)结合律:(λa→)×b→(\lambda\overrightarrow{a})×\overrightarrow{b}(λa)×b=a→×(λb→)\overrightarrow{a}×(\lambda\overrightarrow{b})a×(λb)=λ(a→×b→)\lambda(\overrightarrow{a}×\overrightarrow{b})λ(a×b)
(3)分配律:(a→+b→)×c→(\overrightarrow{a}+\overrightarrow{b})×\overrightarrow{c}(a+b)×c=a→×c→\overrightarrow{a}×\overrightarrow{c}a×c+b→×c→\overrightarrow{b}×\overrightarrow{c}b×c

  1. 坐标表示
  • a→\overrightarrow{a}a=axi→+ayj→+azk→a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k}axi+ayj+azk,b→\overrightarrow{b}b=bxi→+byj→+bzk→b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k}bxi+byj+bzk,则
    a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=(aybz−azby)i→+(azbx−axbz)j→+(axby−aybx)k→(a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j}+(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k}(aybzazby)i+(azbxaxbz)j+(axbyaybx)k
  • 两个向量积的行列式表示
    a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=(aybz−azby)i→+(azbx−axbz)j→+(axby−aybx)k→(a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j} +(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k}(aybzazby)i+(azbxaxbz)j+(axbyaybx)k = ∣i→j→k→axayazbxbybz∣\left| \begin{array}{cccc} \overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\ a_{x}&a_{y}&a_{z}\\ b_{x}&b_{y}&b_{z}\\ \end{array} \right| iaxbxjaybykazbz

http://www.yayakq.cn/news/406920/

相关文章:

  • 网站建设毕业设计综述轮胎 东莞网站建设
  • 旅游网站源代码模板国外做做网站
  • 临淄区住房和城乡建设局网站世纪兴网站建设
  • 上海交通大学网站建设与管理3设计制作的广告公司
  • 佛山做礼物的网站网页设计与制作课件清华大学
  • 成都市网站建设哪家好wordpress 调用小工具栏
  • 沈阳建站价格手机上可以创建网站吗
  • 涿州做网站验证码平台 wordpress
  • 网站导航栏最多可以做几个专业网站设计力荐亿企邦
  • 建湖营销型网站建设工作室腾讯微信官网
  • No餐饮网站建设wordpress中文杂志主题
  • 用什么做网站的访问量统计小清新网站源码
  • 淄博建设企业网站东莞建设工程信息网
  • 做网站能不备案么wordpress怎么修改右上角的内容
  • 制作网站开发用的图片海南省建设执业资格管理中心网站
  • 海南省建设人力资源网站湖南竞网做网站好吗
  • 济南 域名注册 网站建设网站建设教程学校
  • 工作做ppt课件的网站它是企业整体
  • 四川建设人才网网站网站推广的正确方式
  • 建设适应连锁行业网站如何制作一个静态网站源码
  • c2c交易平台官方网站南昌网站推广公司
  • 大型服装商城网站建设报告范文
  • glitch做网站长沙建一个网站大概要多少钱
  • 视频变成网站怎么做的3d培训班一般学费多少
  • 鸿兴网站建设公司网站实现多语言
  • 长春网站策划成都市自住房建设网站
  • 域名连接到网站吗汕头建站模板系统
  • 网站建设制作文字教程东莞天助网的网站
  • mvc5网站开发之美专业的饰品行业网站开发
  • 宝山网站建设 网站外包建博会广州网站