当前位置: 首页 > news >正文

建站专业团队一站式服务无代码开发小程序

建站专业团队一站式服务,无代码开发小程序,进行优化,软件企业公司网站模板生成对抗网络 – GAN 是最近2年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。我们手机里的照片处理软件中就会使用到它。 目录 生成对抗网络 GAN 的基本原理 大白话版本 非大白话版本 第一阶段:固定「判别器D」&#x…

生成对抗网络 – GAN 是最近2年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。我们手机里的照片处理软件中就会使用到它。

目录

生成对抗网络 GAN 的基本原理

大白话版本

非大白话版本

第一阶段:固定「判别器D」,训练「生成器G」

第二阶段:固定「生成器G」,训练「判别器D」

循环阶段一和阶段二

GAN的优缺点

10大典型的GAN算法

GAN 的13种实际应用


人工提取特征——自动提取特征

深度学习最特别最厉害的地方就是能够自己学习特征提取。

机器的超强算力可以解决很多人工无法解决的问题。自动化后,学习能力更强,适应性也更强。

人工判断生成结果的好坏——自动判断和优化

训练集需要大量的人工标注数据,这个过程是成本很高且效率很低的。而人工判断生成结果的好坏也是如此,有成本高和效率低的问题。

而 GAN 能自动完成这个过程,且不断的优化,这是一种效率非常高,且成本很低的方式。GAN是如何实现自动化的呢?下面我们讲解一下他的原理。

生成对抗网络 GAN 的基本原理

大白话版本

知乎上有一个很不错的解释,大家应该都能理解:

假设一个城市治安混乱,很快,这个城市里就会出现无数的小偷。在这些小偷中,有的可能是盗窃高手,有的可能毫无技术可言。假如这个城市开始整饬其治安,突然开展一场打击犯罪的「运动」,警察们开始恢复城市中的巡逻,很快,一批「学艺不精」的小偷就被捉住了。之所以捉住的是那些没有技术含量的小偷,是因为警察们的技术也不行了,在捉住一批低端小偷后,城市的治安水平变得怎样倒还不好说,但很明显,城市里小偷们的平均水平已经大大提高了。

警察们开始继续训练自己的破案技术,开始抓住那些越来越狡猾的小偷。随着这些职业惯犯们的落网,警察们也练就了特别的本事,他们能很快能从一群人中发现可疑人员,于是上前盘查,并最终逮捕嫌犯;小偷们的日子也不好过了,因为警察们的水平大大提高,如果还想以前那样表现得鬼鬼祟祟,那么很快就会被警察捉住。

非大白话版本

生成对抗网络(GAN)由2个重要的部分构成:

  1. 生成器(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器
  2. 判别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器做的“假数据”

下面详细介绍一下过程:

第一阶段:固定「判别器D」,训练「生成器G」

我们使用一个还 OK 判别器,让一个「生成器G」不断生成“假数据”,然后给这个「判别器D」去判断。

一开始,「生成器G」还很弱,所以很容易被揪出来。

但是随着不断的训练,「生成器G」技能不断提升,最终骗过了「判别器D」。

到了这个时候,「判别器D」基本属于瞎猜的状态,判断是否为假数据的概率为50%。

第二阶段:固定「生成器G」,训练「判别器D」

当通过了第一阶段,继续训练「生成器G」就没有意义了。这个时候我们固定「生成器G」,然后开始训练「判别器D」。

「判别器D」通过不断训练,提高了自己的鉴别能力,最终他可以准确的判断出所有的假图片。

到了这个时候,「生成器G」已经无法骗过「判别器D」。

循环阶段一和阶段二

通过不断的循环,「生成器G」和「判别器D」的能力都越来越强。

最终我们得到了一个效果非常好的「生成器G」,我们就可以用它来生成我们想要的图片了。

下面的实际应用部分会展示很多“惊艳”的案例。

如果对 GAN 的详细技术原理感兴趣,可以看看下面2篇文章:

《生成性对抗网络(GAN)初学者指南 – 附代码》

《长文解释生成对抗网络GAN的详细原理(20分钟阅读)》

GAN的优缺点

3个优势

  1. 能更好建模数据分布(图像更锐利、清晰)
  2. 理论上,GANs 能训练任何一种生成器网络。其他的框架需要生成器网络有一些特定的函数形式,比如输出层是高斯的。
  3. 无需利用马尔科夫链反复采样,无需在学习过程中进行推断,没有复杂的变分下界,避开近似计算棘手的概率的难题。

2个缺陷

  1. 难训练,不稳定。生成器和判别器之间需要很好的同步,但是在实际训练中很容易D收敛,G发散。D/G 的训练需要精心的设计。
  2. 模式缺失(Mode Collapse)问题。GANs的学习过程可能出现模式缺失,生成器开始退化,总是生成同样的样本点,无法继续学习。

10大典型的GAN算法

GAN 算法有数百种之多,大家对于 GAN 的研究呈指数级的上涨,目前每个月都有数百篇论坛是关于对抗网络的。

下图是每个月关于 GAN 的论文发表数量:

关于GANs的论文呈指数级增长

如果你对 GANs 算法感兴趣,可以在 「GANs动物园」里查看几乎所有的算法。我们为大家从众多算法中挑选了10个比较有代表性的算法,技术人员可以看看他的论文和代码。

算法论文代码
GAN论文地址代码地址
DCGAN论文地址代码地址
CGAN论文地址代码地址
CycleGAN论文地址代码地址
CoGAN论文地址代码地址
ProGAN论文地址代码地址
WGAN论文地址代码地址
SAGAN论文地址代码地址
BigGAN论文地址代码地址

上面内容整理自《Generative Adversarial Networks – The Story So Far》原文中对算法有一些粗略的说明,感兴趣的可以看看。

GAN 的13种实际应用

GAN 看上去不如「语音识别」「文本挖掘」那么直观。不过他的应用已经进入到我们的生活中了。下面给大家列举一些 GAN 的实际应用。

生成图像数据集

人工智能的训练是需要大量的数据集的,如果全部靠人工收集和标注,成本是很高的。GAN 可以自动的生成一些数据集,提供低成本的训练数据。

GANs生成人脸的矢量算法案例

生成人脸照片

生成人脸照片是大家很熟悉的应用,但是生成出来的照片用来做什么是需要思考的问题。因为这种人脸照片还处于法律的边缘。

2014年至2017年GANs能力进展的实例

生成照片、漫画人物

GAN 不但能生成人脸,还能生成其他类型的照片,甚至是漫画人物。

GANs生成的照片

GANs生成的漫画人物

图像到图像的转换

简单说就是把一种形式的图像转换成另外一种形式的图像,就好像加滤镜一样神奇。例如:

  • 把草稿转换成照片
  • 把卫星照片转换为Google地图的图片
  • 把照片转换成油画
  • 把白天转换成黑夜

用pix2pix从草图到彩色照片的示例

GANs应用-照片到油画、马到斑马、冬天到夏天、照片到google地图

文字到图像的转换

特别是他们的 StackGAN,从鸟类和花卉等简单对象的文本描述中生成逼真的照片。

从StackGAN获取鸟类的文本描述和GAN生成照片的示例

语意 – 图像 – 照片 的转换

在2017年标题为“ 高分辨率图像合成和带条件GAN的语义操纵 ”的论文中,演示了在语义图像或草图作为输入的情况下使用条件GAN生成逼真图像。

语义图像和GAN生成的城市景观照片的示例

自动生成模特

在2017年标题为“ 姿势引导人形象生成 ”的论文中,可以自动生成人体模特,并且使用新的姿势。

GAN生成了新的模特姿势

照片到Emojis

GANs 可以通过人脸照片自动生成对应的表情(Emojis)。

名人照片和GAN生成的表情符号示例

照片编辑

使用GAN可以生成特定的照片,例如更换头发颜色、更改面部表情、甚至是改变性别。

使用IcGAN编辑照片的效果

预测不同年龄的长相

给一张人脸照片, GAN 就可以帮你预测不同年龄阶段你会长成什么样。

用具有不同表观年龄的GAN生成的面部照片的示例

提高照片分辨率,让照片更清晰

给GAN一张照片,他就能生成一张分辨率更高的照片,使得这个照片更加清晰。

GANs在原始照片的基础上增加分辨率,使照片更清晰

照片修复

假如照片中有一个区域出现了问题(例如被涂上颜色或者被抹去),GAN可以修复这个区域,还原成原始的状态。

遮住照片中间的一部分,GANs可以很好的修复

自动生成3D模型

给出多个不同角度的2D图像,就可以生成一个3D模型。

从2D图像到3D椅子模型的建立过程

生成式对抗网络(GAN, Generative Adversarial Networks )

是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。

生成对抗网络(GAN)是一类用于无监督机器学习的人工智能算法,由在零和游戏框架中相互竞争的两个神经网络系统实现。他们是由Ian Goodfellow 等人介绍的。在2014年这种技术可以生成照片看起来至少在表面上真实的人的观察员,有很多的现实特征(虽然在测试中的人可以真正告诉在许多情况下产生)。

http://www.yayakq.cn/news/600036/

相关文章:

  • 华为官方网站手机商城首页做商贸网站
  • 装修公司网站 源码wordpress 支付宝免签
  • 网站小白怎么开始学网站建设重庆网站设计中心
  • 如何做好专业类网站网站备案号 主体备案号
  • 上海建站哪家好怎么让百度搜出自己
  • 游戏网站做的思想步骤注册深圳公司有什么好处
  • 网站开发 流程企业网站做优化
  • 芜湖网站优化企业如何打造自己的品牌
  • 美食网站 怎么做生产管理系统免费版
  • 事业单位网站建设的账务处理合肥seo排名优化
  • 各大网站注册记录做单位网站
  • 网站建设注意事项移动网站建设专业论文
  • 同字形结构布局网站成都网站建设 工作室
  • 聊城医院网站建设货源网站开发
  • 建设网站怎样分配给用户空间佛山优化公司推广
  • 网站登录密码怎么取消保存云相册网站怎么做
  • 国内做五金加工的订单网站阿里虚拟机建设网站
  • 专业定制网站公司兼职网站高中生在家可做
  • 个人备案网站内容cosy主题wordpress
  • wordpress++分页优化方案官方网站
  • 做网站开发的想接私活做网站的公司找客户
  • 重庆企业型网站建设优书网打不开了
  • 涡阳在北京做网站的名人长沙 php企业网站系统
  • 网页制作与网站建设宝典 pdf如何将自己做的网站放到网上去
  • 建设工程质量安全管理体系网站比较好的做网站的公司
  • 寻花问柳-专注做一家男人的网站猪网站开发的pc或移动端
  • 网站地图怎么做一键导航展会设计公司简介
  • 制作外贸网站公司网页设计心得体会报告怎么写
  • 浙江网站建设多少钱高度重视网站建设 利用网站 接受监督
  • app商城网站开发网站建设方案ppt