当前位置: 首页 > news >正文

网站建设与管理是什么海口手机网站建设

网站建设与管理是什么,海口手机网站建设,wordpress html,用群晖做网站服务器一、YOLO V10 在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经…

一、YOLO V10

在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但它已经不是最强的了。最新的 YOLO-V10 已经完全超越之前的所有版本, YOLO-V10 由清华大学提供,采用无 NMS 训练和效率-精度驱动架构,提供目前最先进的性能和延迟。

在这里插入图片描述

从上图中的对比效果可以明显看出, YOLO-V10 不仅在速度上得到了极大的提升,精度同样也得到了明显的提升。主要得益于其 无 NMS 训练的重大变化。

在模型上 V10 和之前的版本类似,包括不同大小的模型,从小到大包括:

  • YOLOv10-N:用于资源极其有限环境的纳米版本。
  • YOLOv10-S:兼顾速度和精度的小型版本。
  • YOLOv10-M:通用中型版本。
  • YOLOv10-B:平衡型,宽度增加,精度更高。
  • YOLOv10-L:大型版本,精度更高,但计算资源增加。
  • YOLOv10-X:超大型版本可实现最高精度和性能。

模型的比较如下:

在这里插入图片描述

更多的介绍可以参考官方的文档:

https://docs.ultralytics.com/de/models/yolov10/#model-variants

本文借助 ultralytics 框架对 YOLO V10 迁移训练自定义的目标检测模型,本次实验训练一个人脸检测模型,包括数据标注、数据拆分、训练、测试等过程。

实验采用 ultralytics 框架,可以帮助开发人员高效完成数据训练和验证任务,由于 ultralytics 默认采用的为 PyTorch 框架,因此实验前请安装好 cudatorch 环境,如果没有 GPU 环境,由于YOLO V10 已经足够轻量级,使用CPU 也是可以训练。

安装 ultralytics 库:

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

如果已经安装,需要更新到最新版本:

pip install --upgrade ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

ultralytics 使用文档:

https://docs.ultralytics.com/zh/quickstart/#use-ultralytics-with-python

测试 YOLO V10 的效果:

测试图片:
在这里插入图片描述

这里使用 yolov10n 模型,如果模型不存在会自动下载

from ultralytics import YOLO
# Load a model
model = YOLO('yolov10n.pt')results = model.predict('./img/1.png')
results[0].show()

在这里插入图片描述

在这里插入图片描述

二、准备训练数据及标注

图像数据可以从网上找一些或者自己拍摄,我这里准备了一些 人 的图片:

在这里插入图片描述

这里可以准备两个目录,data/imagesdata/labels,其中 labels 存放标注后的文件,将收集到的图像放在 images 目录下:

在这里插入图片描述

下面使用 labelimg 工具进行标注,如果没有安装,使用下面命令安装:

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

然后在控制台输入:labelimg 打开可视化工具:

在这里插入图片描述

注意:数据集格式默认是 VOC 格式的,要选择为 YOLO ,我这里的人脸标签为 face ,这个后面需要使用到。

标注完成后,可以在 /data/labels 下看到标注后的文件:

在这里插入图片描述

三、数据拆分

这里拆分为 90% 的训练集,10% 的验证集,这部分和之前训练 YOLO V8 时一致,拆分脚本如下,

import os
import shutil
from tqdm import tqdm# 图片地址
image_dir = "data/images/"
# 标准文件地址
label_dir = "data/labels/"
# 训练集的比例
training_ratio = 0.9
# 拆分后数据的位置
train_dir = "train_data"def split_data():list = os.listdir(image_dir)all = len(list)train_count = int(all * training_ratio)train_images = list[0:train_count]val_images = list[train_count:]# 训练集目录os.makedirs(os.path.join(train_dir, "images/train"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/train"), exist_ok=True)# 验证集目录os.makedirs(os.path.join(train_dir, "images/val"), exist_ok=True)os.makedirs(os.path.join(train_dir, "labels/val"), exist_ok=True)# 训练集with open(os.path.join(train_dir, "train.txt"), "w") as file:file.write("\n".join([train_dir + "images/train/" + image_file for image_file in train_images]))print("save train.txt success!")# 拷贝数据for item in tqdm(train_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/train/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/train/"))# 验证集with open(os.path.join(train_dir, "val.txt"), "w") as file:file.write("\n".join([train_dir + "images/val/" + image_file for image_file in val_images]))print("save val.txt success!")# 拷贝数据for item in tqdm(val_images):label_file = item.replace(".jpg", ".txt")shutil.copy(os.path.join(image_dir, item), os.path.join(train_dir, "images/val/"))shutil.copy(os.path.join(label_dir, label_file), os.path.join(train_dir, "labels/val/"))if __name__ == '__main__':split_data()

在这里插入图片描述
可以在 train_data 中看到拆分后的数据集格式:

在这里插入图片描述

四、训练

使用 ultralytics 框架训练非常简单,仅需三行代码即可完成训练,不过在训练前需要编写 YAML 配置信息,主要标记数据集的位置。

创建 face.yaml 文件,写入下面内容:


path: D:/pyProject/yolov10/train_data # 数据集的根目录, 建议使用绝对路径
train: images/train # 训练集图像目录
val: images/val # 验证集图像目录
test: # test images (optional)# 分类
names:0: face

注意分类中的 face 就是上面标注时的标签名。

开始训练:

from ultralytics import YOLO# 加载模型
model = YOLO('yolov10n.pt')# 训练
model.train(data='face.yaml', # 训练配置文件epochs=100, # 训练的周期imgsz=640, # 图像的大小device=[0], # 设备,如果是 cpu 则是 device='cpu'workers=0,lr0=0.0001, # 学习率batch=8, # 批次大小amp=False # 是否启用混合精度训练
)

运行后可以看到打印的网络结构:

在这里插入图片描述

训练中:

在这里插入图片描述

训练结束后可以在 runs 目录下面看到训练的结果:

在这里插入图片描述

其中 weights 下面的就是训练后保存的模型,这里可以先看下训练时 loss 的变化图:

在这里插入图片描述

五、模型测试

runs\detect\train\weights 下可以看到 best.ptlast.pt 两个模型,表示最佳和最终模型,下面使用 best.pt 模型进行测试

from ultralytics import YOLO
from matplotlib import pyplot as plt
import os
plt.rcParams['font.sans-serif'] = ['SimHei']# 测试图片地址
base_path = "test"
# 加载模型
model = YOLO('runs/detect/train/weights/best.pt')
for img_name in os.listdir(base_path):img_path = os.path.join(base_path, img_name)image = plt.imread(img_path)# 预测results = model.predict(image, device='cpu')boxes = results[0].boxes.xyxyconfs = results[0].boxes.confax = plt.gca()for index, boxe in enumerate(boxes):x1, y1, x2, y2 = boxe[0], boxe[1], boxe[2], boxe[3]score = confs[index].item()ax.add_patch(plt.Rectangle((x1, y1), (x2 - x1), (y2 - y1), linewidth=2, fill=False, color='red'))plt.text(x=x1, y=y1-10, s="{:.2f}".format(score), fontsize=15, color='white',bbox=dict(facecolor='black', alpha=0.5))plt.imshow(image)plt.show()

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

http://www.yayakq.cn/news/485394/

相关文章:

  • 网站建设课程h5网站开发模板
  • 优秀网站推荐金溪县建设局网站
  • 中山建网站多少钱南京seo优化
  • 手机如何创建个人网站建站公司建的网站能改动吗
  • 帮网站做代理简述织梦网站上传步骤
  • 为何要网站优化河源建设用地竞拍网站
  • 行业做门户网站挣钱吗太原百度seo排名软件
  • 怎么做网站程序企业建站公司排名为什么不好做
  • 网站开发技术课程设计说明书网站图片广告代码
  • 企业做网站有哪些好处开发定制软件公司
  • 马鞍山市网站建设中小学网站建设排行2017
  • 建设网站的运行费包括什么wordpress模板QQ评论
  • 婚礼婚庆网站建设需求分析营销策划公司 品牌策划公司
  • 天津企业网站专业订制wordpress用户密码 破解
  • 贵州两学一做教育网站dede减肥网站模板
  • 芜湖企业做网站网页设计是做什么
  • 佛山高端网站开发公司wordpress 中文官网
  • 用凡科做的手机网站版高端网站建设推来客网络
  • jsp ajax网站开发典型实例 pdf百度图片识别在线识图
  • 新网站上线怎么做seo学编程的步骤
  • 长沙做一个网站要多少钱品牌建设的阶段和步骤是什么
  • 导航网址网站怎么做wordpress被改密码
  • 网站建设咋打开自己网站主页网址设计学校网站模板免费下载
  • 门户网站标题居中加大软件外包公司容易进吗
  • 备案时的网站名称国外网站建设平台
  • 男做女爱网站正规的营销型网站建设
  • 网站开发工具.晴天娃娃自己电脑做主机怎么做网站
  • 宁波网站建设官网素材网站 源码
  • 新钥匙建站网站域名好了下一步
  • 专门做毕设的网站apicloud手机版下载