当前位置: 首页 > news >正文

多国语言网站手机版wordpress

多国语言网站,手机版wordpress,网址导航百万字论坛,免费申请logo展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括: 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与部署 加载和应用已训练的模型 1. 数据准备与预处理 在本例中,数据准备是通过两个 Numpy 数…

展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括:

1. 数据准备与预处理

2. 构建模型

3. 编译模型

4. 训练模型

5. 评估模型

6. 模型应用与部署

加载和应用已训练的模型


1. 数据准备与预处理

在本例中,数据准备是通过两个 Numpy 数组来完成的:

  • x:输入特征,形状为 (8, 2),包含 8 个数据点,每个数据点有 2 个特征。
  • y:标签,形状为 (8,),包含对应的 0 或 1 标签,表示每个输入点的类别。
x = np.array([[1, 1], [1, -1], [-1, 1], [-1, -1], [0.7, 0.7], [0.7, -0.7], [-0.7, -0.7], [-0.7, 0.7]])
y = np.array([1, 1, 1, 1, 0, 0, 0, 0])

2. 构建模型

使用 Keras 的 Sequential 模型来构建神经网络。此模型包含两个全连接层(Dense 层):

  • 第一个 Dense 层有 3 个单位,激活函数是 Sigmoid。
  • 第二个 Dense 层有 1 个单位,激活函数是 Sigmoid,输出层的激活函数将模型输出的值映射到 0 到 1 之间,适合二分类任务。
l1 = tf.keras.layers.Dense(units=3, activation='sigmoid')
l2 = tf.keras.layers.Dense(units=1, activation='sigmoid')
model = tf.keras.Sequential([l1, l2])

3. 编译模型

在编译阶段,我们选择了优化器、损失函数和评估指标:

  • 优化器:SGD(随机梯度下降),学习率设置为 0.9。
  • 损失函数:binary_crossentropy,适用于二分类任务。
  • 评估指标:accuracy,表示训练过程中对分类准确率的衡量。
sgd = tf.keras.optimizers.SGD(learning_rate=0.9)
model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy'])

4. 训练模型

通过 model.fit() 函数来训练模型。我们传入训练数据 x 和标签 y,并设置训练的 epoch 数量为 2000。

model.fit(x, y, epochs=2000)

5. 评估模型

在此示例中,评估部分通过训练后的 model 来进行,并没有显式写出 evaluate() 函数。评估通常是在训练之后,通过测试集或验证集对模型性能进行评估,具体可以使用 model.evaluate() 来查看损失和准确度。

6. 模型应用与部署

训练完成后,我们保存了训练好的模型。保存后的模型可以被加载和应用于新的数据集。

model.save('my_model.keras')  # 保存模型

7.加载和应用已训练的模型

加载保存的模型,并用其对新数据进行预测。model.predict() 方法返回的是预测的概率值,我们通过设置阈值(如 0.9)将其转换为类别(0 或 1)。

model = tf.keras.models.load_model('my_model.keras')  # 加载模型
nx = np.array([[2, 2], [0.1, 0.1], [1.1, 1.2], [0.3, 0.3]])  # 新的输入数据
predictions = model.predict(nx)  # 获取预测结果
print(predictions)  # 输出概率# 将概率转化为类别
predicted_classes = (predictions > 0.9).astype(int)
print(predicted_classes)  # 输出最终的类别预测

8.完整代码
test.py 训练模型

import tensorflow as tf
import numpy as np
# 创建int32类型的0维张量,即标量
l1=tf.keras.layers.Dense(units=3,activation='sigmoid')
l2=tf.keras.layers.Dense(units=1,activation='sigmoid')
model=tf.keras.Sequential([l1,l2])
sgd = tf.keras.optimizers.SGD(learning_rate=0.9)
model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy'])
x=np.array([[1,1],[1,-1],[-1,1],[-1,-1],[0.7,0.7],[0.7,-0.7],[-0.7,-0.7],[-0.7,0.7]])
y=np.array([1,1,1,1,0,0,0,0])
model.fit(x,y,epochs=2000)
# 保存训练好的模型(Keras 格式)
model.save('my_model.keras')

 test2.py加载模型并进行预测:

import tensorflow as tf
import numpy as np# 加载训练好的模型
model = tf.keras.models.load_model('my_model.keras')# 预测数据
nx = np.array([[2, 2], [0.1, 0.1], [1.1, 1.2], [0.3, 0.3]])# 获取预测结果
predictions = model.predict(nx)# 输出预测结果
print(predictions)# 如果需要将概率转化为类别(0或1)
predicted_classes = (predictions > 0.9).astype(int)# 输出最终的类别预测
print(predicted_classes)

9.视频分享


初识TensorFlow 
https://v.douyin.com/ifG2mmLH/
复制此链接,打开Dou音搜索,直接观看视频!

http://www.yayakq.cn/news/871522/

相关文章:

  • 曲靖网站建设公司微商城下载
  • 网站代做多少钱上海注册设计公司网站
  • 福州网站建设公司中小企业wordpress 如何调用函数
  • 唐山网站制作价格上海手机网站制作公司
  • 永顺网站建设网站建设全流程 知乎
  • 成品ppt的网站免费直播有哪些手机怎么制作视频短片
  • 做网站链接容易吗织梦网站打开速度慢
  • 站长工具天美传媒免费网络推广
  • 青岛小型网站建设编程网站scratch在线使用
  • wordpress 单点登录网站搜索引擎优化的方法
  • 建设网站需要下载神呢软件吗做得比较好的公司网站
  • 网站开发软件开发如何看网站的浏览量
  • 网站开发的开发意义53建筑人才网
  • 百度怎么建设网站编程机构
  • 有哪些建设网站的怎么申请一个免费的网站
  • 游戏介绍网站模板下载地址wordpress app封装
  • 黑龙江建设教育信息网站首页开发和研发的区别
  • 建设网站与维护wordpress 修改数据库表
  • 网站建设工具哪个好wordpress如何添加导航
  • 网站icp备案做视频网站用什么好
  • 海口网站制作计划实用的wordpress插件
  • 公民道德建设网站南昌外包建站
  • 手机端的网站怎么做的信息网站设计方案
  • 深圳产品推广网站建设方案asp连接数据库做登录网站完整下载
  • 做衣服视频有些什么网站win7 iis 默认网站
  • 企业建网站有这个必要吗网站运营与建设
  • 金华网站建设方案优化网站建设技术架构
  • 易语言如何做网站太原市今天新闻
  • 微博网站开发新建设电影院 网站
  • 公司网站建设系统网页广告拦截怎么设置