当前位置: 首页 > news >正文

企业电话号码查询网站如何做公司自己的网站

企业电话号码查询网站,如何做公司自己的网站,商标制作logo在线制作,上海专业网站建设流程1. 线程池参数设置 CPU数量:N线程池的核心线程数量 IO密集型的话,一般设置为 2 * N 1; CPU密集型的话,一般设置为 N 1 或者 使用进程池。线程池的最大任务队列长度 (线程池的核心线程数 / 单个任务的执行时间&#…

1. 线程池参数设置

  1. CPU数量:N
  2. 线程池的核心线程数量
    IO密集型的话,一般设置为 2 * N + 1
    CPU密集型的话,一般设置为 N + 1 或者 使用进程池。
  3. 线程池的最大任务队列长度
    (线程池的核心线程数 / 单个任务的执行时间)* 2
    如果线程池有10个核心线程,单个任务的执行时间为0.1s,那么最大任务队列长度设置为200。
from concurrent.futures import ThreadPoolExecutor
thread_pool = ThreadPoolExecutor(max_workers=10)

2. submit方式提交

submit 这种提交方式是一条一条地提交任务:
1. 可以提交不同的任务函数;
2. 线程池的线程在执行任务时出现异常,程序不会停止,而且也看不到对应的报错信息;
3. 得到的结果是乱序的。

import time
from concurrent.futures import ThreadPoolExecutor, as_completeddef run_task(delay):print(f"------------> start to execute task {delay} <------------")time.sleep(delay)print(f"------------> task {delay} execute over !!! <------------")return delay + 10000task_params = [1, 4, 2, 5, 3, 6] * 10
threadpool_max_worker = 10      # io密集型:cpu数量*2+1;cpu密集型:cpu数量+1
thread_pool = ThreadPoolExecutor(max_workers=threadpool_max_worker)############################### 方式1. 虽然是异步提交任务,但是却是同步执行任务。
for p in task_params:future = thread_pool.submit(run_task, p)print(future.result())      # 直接阻塞当前线程,直到任务完成并返回结果,即变成同步############################### 方式2. 异步提交任务,而且异步执行任务,乱序执行,结果乱序。
future_list = []
for p in task_params:future = thread_pool.submit(run_task, p)future_list.append(future)for res in as_completed(future_list):       # 等待子线程执行完毕,先完成的会先打印出来结果,结果是无序的print(f"get last result is {res.result()}")

3. map方式提交

map 这种提交方式可以分批次提交任务:

  1. 每个批次提价的任务函数都相同;
  2. 线程池的线程在执行任务时出现异常,程序终止并打印报错信息;
  3. 得到的结果是有序的。
import time
from concurrent.futures import ThreadPoolExecutor, as_completeddef run_task(delay):print(f"------------> start to execute task {delay} <------------")time.sleep(delay)print(f"------------> task {delay} execute over !!! <------------")return delay + 10000task_params = [1, 4, 2, 5, 3, 6] * 10
threadpool_max_worker = 5      # io密集型:cpu数量*2+1;cpu密集型:cpu数量+1
thread_pool = ThreadPoolExecutor(max_workers=threadpool_max_worker)task_res = thread_pool.map(run_task, task_params)		# 批量提交任务,乱序执行
print(f"main thread run finished!")
for res in task_res:		# 虽然任务是乱序执行的,但是得到的结果却是有序的。print(f"get last result is {res}")

4. 防止一次性提交的任务量过多

import time
from concurrent.futures import ThreadPoolExecutordef run_task(delay):print(f"------------> start to execute task <------------")time.sleep(delay)print(f"------------> task execute over !!! <------------")task_params = [1, 4, 2, 5, 3, 6] * 100
threadpool_max_worker = 10      # io密集型:cpu数量*2+1;cpu密集型:cpu数量+1
thread_pool = ThreadPoolExecutor(max_workers=threadpool_max_worker)
threadpool_max_queue_size = 200     # 线程池任务队列长度一般设置为  (线程池核心线程数/单个任务执行时间)* 2for p in task_params:print(f"*****************> 1. current queue size of thread pool is {thread_pool._work_queue.qsize()}")while thread_pool._work_queue.qsize() >= threadpool_max_queue_size:time.sleep(1)		# sleep时间要超过单个任务的执行时间print(f"*****************> 2. current queue size of thread pool is {thread_pool._work_queue.qsize()}")thread_pool.submit(run_task, p)print(f"main thread run finished!")

5. 案例分享

案例背景:由于kafka一个topic的一个分区数据只能由一个消费者组中的一个消费者消费,所以现在使用线程池,从kafka里消费某一个分区的数据,将数据提取出来并存于mysql或者redis,然后手动提交offset。

import time
import queue
import concurrent.futures
from threading import Thread
from concurrent.futures import ThreadPoolExecutordef send_task_to_queue(q, params):for idx, p in enumerate(params):q.put((idx, p))     # 把kafka数据put到queue里,如果queue满了就先阻塞着,等待第15行get数据后腾出空间,这里继续put数据print(f"\n set p: {p} into task queue, queue size is {q.qsize()}")def run_task(param_queue):idx, p = param_queue.get()      # 这里一直get数据,即使queue空了,只要kafka持续产生数据,第10行就会持续put数据到queue里print(f"\n ------------> start to execute task {idx} <------------")time.sleep(p)print(f"\n ------------> task {idx} execute over !!! <------------")return idxtask_params = [1, 4, 2, 5, 3] * 20      # 数据模拟kafka中消费得到的数据
thread_pool = ThreadPoolExecutor(max_workers=10)
task_param_queue = queue.Queue(maxsize=10)# 这里启动一个子线程一直往queue里put数据
thread_send_task = Thread(target=send_task_to_queue, args=(task_param_queue, task_params))
thread_send_task.start()while True:     # 这里为什么一直死循环:只要生产者生产数据存储在kafka中,那么消费者就一直能获取到数据future_list = []# 分批去消费queue里的数据for i in range(10):# 这里的子线程从queue里get任务后,queue腾出空间,上面的子线程继续往里面put数据future_list.append(thread_pool.submit(run_task, task_param_queue))# 子线程任务执行结束后,从结果里取最大的索引值,可以用于redis记录,并用户手动提交offset...complete_res, uncomplete_res = concurrent.futures.wait(future_list)future_max_idx = max([future_complete.result() for future_complete in complete_res])print(f"\n ######################################## every batch's max idx is {future_max_idx}")...		# 自行使用 future_max_idx 这个值做处理...

6. 案例优化

上面的案例,是将数据存储于线程队列中,保证每个子线程get()到的数据不重复。
既然线程队列可以保证每个子线程get到的数据不重复,那么利用生成器的一次性特性(使用完一次就没了),是不是也能达到这个效果呢?
试着优化下:

import time
import concurrent.futures
from concurrent.futures import ThreadPoolExecutordef run_task(param_generator):try:idx, p = next(param_generator)print(f"\n ------------> start to execute task idx {idx} <------------")time.sleep(p)print(f"\n ------------> task value {p} execute over !!! <------------")return idxexcept StopIteration:return -1# 这里将task_params变成生成器,使用生成器的一次性特性:消费完一次后数据就消失了
task_params_generator = ((idx, val) for idx, val in enumerate([1, 4, 2, 5, 3] * 20))
thread_pool = ThreadPoolExecutor(max_workers=10)while True:     # 这里为什么一直死循环:只要生产者生产数据存储在kafka中,那么消费者就一直能获取到数据future_list = []# 分批去消费生成器中的数据for i in range(10):# 这里的子线程从生成器中消费数据future_list.append(thread_pool.submit(run_task, task_params_generator))# 子线程任务执行结束后,从结果里取最大的索引用于redis记录,并手动提交offsetcomplete_res, uncomplete_res = concurrent.futures.wait(future_list)future_max_idx = max([future_complete.result() for future_complete in complete_res])print(f"\n ######################################## every batch's max idx is {future_max_idx}")if future_max_idx == -1:        # 如果为-1,说明生成器的数据已经迭代完了,等待kafka新生成数据print(f"\n generator has empty !!!!!")time.sleep(60)
http://www.yayakq.cn/news/197466/

相关文章:

  • wordpress网站模板仿站工具政务服务网站建设汇报
  • 黔南网站建设西安公司注册代理
  • 长春火车站到吉大二院做网站需要做数据库
  • 网站建设活动公司网站怎么能被百度收录
  • 长沙臻钬建站活动方案手机网站建设yu
  • 继续访问这个网站wordpress 监控应用
  • 天津星创网站建设有限公司wordpress电影站主题
  • 潍坊做网站好看建筑企业网站有哪些
  • 东莞地产公司网站建设东莞规划局
  • 自己搭建一个网站中山企业手机网站建设
  • 国家建设部网站网络广告策划流程有哪些?
  • ps和dw做网站一键优化免费下载
  • 如何做网站价格策略各大中文网站
  • o2o网站建设教程网站设计西安网站建设
  • 服装电子商务的网站建设万户网络技术
  • 阿里云网站建设考试题目网站设计四项原则
  • 注册网站的公司名字wordpress插件入门
  • 广东住房和建设局网站官网如何提高网站点击率
  • 网站建设书 模板下载创建公司需要什么条件
  • 西安网站优化体验python做网站有优势
  • 电子商务网站建设c我对网站开发的反思
  • 做京挑客的网站有哪些wordpress底部音频
  • 网站后台密码破解教程完整酒店网站开发
  • 苏州高端网站制作机构wordpress看到网络蜘蛛
  • 网站注册界面设计企业所得税怎么征收比例
  • 怎样注册网站网站与网页的区别与联系
  • 资讯类网站模板下载深圳市建设安监站网站
  • 阎良区网站建设仿我喜欢网站源码免费
  • 服务器网站访问慢新出的app推广在哪找
  • 优化网站搜索模板建网站哪个品牌好