当前位置: 首页 > news >正文

网站建设服务的具体条件做网站怎么购买主机

网站建设服务的具体条件,做网站怎么购买主机,泗县住房和城乡建设局网站,dz论坛seo知识要点 迁移学习: 使用别人预训练模型参数时,要注意别人的预处理方式。 常见的迁移学习方式: 载入权重后训练所有参数.载入权重后只训练最后几层参数.载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层.训练数据是 10_m…

知识要点

  • 迁移学习: 使用别人预训练模型参数时,要注意别人的预处理方式。

  • 常见的迁移学习方式:

    • 载入权重后训练所有参数.
    • 载入权重后只训练最后几层参数.
    • 载入权重后在原网络基础上再添加一层全连接层仅训练最后一个全连接层.
  • 训练数据是 10_monkeys 数据: 10种猴子的图片集
  • 图片显示: plt.imshow(mokey)
  • 读取图片: mokey = plt.imread('./50.jpg')

导入resnet 模型:

  • resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg')      # 导入模型
  • model = keras.models.Sequential()      # 开始建模
  • model.add(resnet50)     # 添加resnet 网络
  • model.add(keras.layers.Dense(num_classes=10, activation = 'softmax'))     # 添加全连接层
  • model.layers[0].trainable = False     # 除了最后一个全连接层, 其余部分参数不变
  • 模型配置:
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])
  • valid_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input)    # 数据初始化处理
  • 指定后面几层参数变化:
# 切片指定, 不可调整的层数
for layer in resnet50.layers[0:-5]:layer.trainable = False


一 迁移学习

1.1 简介

使用迁移学习的优势:

  • 能够快速的训练出一个理想的结果
  • 当数据集较小时也能训练出理想的效

注意:使用别人预训练模型参数时,要注意别人的预处理方式。

1.2 常见迁移方式

常见的迁移学习方式:

  • 载入权重后训练所有参数.
  • 载入权重后只训练最后几层参数.
  • 载入权重后在原网络基础上再添加一层全连接层仅训练最后一个全连接层.

二 代码实现

2.1 导包

from tensorflow import keras
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as pltcpu=tf.config.list_physical_devices("CPU")
tf.config.set_visible_devices(cpu)
print(tf.config.list_logical_devices())

2.2 迁移模型  (在迁移模型 后加一层)

resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg')num_classes =10
model = keras.models.Sequential()
model.add(resnet50)
model.add(keras.layers.Dense(num_classes, activation = 'softmax'))
model.summary()

2.3 配置模型 (除最后一层外, 其余参数全部冻结)

# 把除最后一层的参数外, 全部冻结
model.layers[0].trainable = False
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])

2.4 导入数据

train_dir = '../day 48 resnet/training/training/'
valid_dir = '../day 48 resnet/validation/validation/'
  • 原始数据处理
train_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input,rotation_range = 40,width_shift_range = 0.2,height_shift_range = 0.2,shear_range = 0.2,zoom_range = 0.2,horizontal_flip = True,vertical_flip = True,fill_mode = 'nearest')height = 224
width = 224
channels = 3
batch_size = 32
num_classes = 10train_generator = train_datagen.flow_from_directory(train_dir,target_size= (height, width),batch_size = batch_size,shuffle= True,seed = 7,class_mode= 'categorical')valid_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input)valid_generator = valid_datagen.flow_from_directory(valid_dir,target_size= (height, width),batch_size= batch_size,shuffle= True,seed = 7,class_mode= 'categorical')
print(train_generator.samples)   # 1098
print(valid_generator.samples)   # 272

2.5 模型训练

# 使用迁移学习, 效果较差, 原始数据的处理方式不同
# 修改需处理方式继续执行, 效果较好
histroy = model.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data = valid_generator,validation_steps= valid_generator.samples // batch_size)

 2.6 训练后面几层神经网络参数

resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg', weights='imagenet')
# 切片指定, 不可调整的层数
for layer in resnet50.layers[0:-5]:layer.trainable = False# 添加输出层
resnet50_new = keras.models.Sequential([resnet50, keras.layers.Dense(10, activation = 'softmax')])
resnet50_new.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])
resnet50_new.summary()

histroy = resnet50_new.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data = valid_generator,validation_steps= valid_generator.samples // batch_size)

三 图片处理查看

3.1 图片显示

# 预测数据
mokey = plt.imread('./n5020.jpg')
plt.imshow(mokey)    # mokey.shape  (600, 336, 3)

for i in range(2):x, y = train_generator.next()print(type(x), type(y))    # <class 'numpy.ndarray'> <class 'numpy.ndarray'>print('***', x.shape, y.shape)  # *** (32, 224, 224, 3) (32, 10)

3.2 尺寸变换

# 主要是形状和尺寸不对
# 改变尺寸, 再改变形状reshape
from scipy import ndimage  # 专门处理图片
# 改变形状
# 224 = 367 * x  x = 224/367
# 224 = 550 * y  y = 224/550
zoom = (224/mokey.shape[0], 224/mokey.shape[1])
monkey_zoomed = ndimage.zoom(mokey, (224/mokey.shape[0], 224/mokey.shape[1], 1))
monkey_zoomed.shape   # (224, 224, 3)
monkey_1 = keras.applications.resnet50.preprocess_input(monkey_zoomed)
monkey_1.min()    # -123.68
monkey_1 = monkey_1.reshape(1, 224, 224, 3)
model.predict(monkey_1).argmax(axis = 1)  # array([5], dtype=int64)

3.3 resnet 图片处理方式

3.3.1 前景查看

mokey1 = mokey/127.5
plt.imshow(mokey1)

3.3.2 背景查看

mokey1 = mokey1 - 1
plt.imshow(mokey1)

mokey1

http://www.yayakq.cn/news/581085/

相关文章:

  • 慈溪建设银行支行网站移动建站工具
  • vps做网站教程头像在线设计生成器
  • 网站建设 书籍营销策略ppt
  • 装饰公司怎样做网站苏州广告公司招聘
  • 织梦企业黄页网站源码装修素材网站有哪些
  • 沈阳鹊起网站建设濮阳专业做网站公司
  • 高端网站建设的品牌重庆维力安网站建设
  • 网站 站外链接微盟商城
  • 商城分销怎么做seo权重查询
  • 做网站公司怎么拉客户阿里巴巴网站怎么做全屏分类
  • 网站制作目的erp财务软件怎么使用
  • 片多多影视剧免费观看在线观看品牌推广百度seo
  • 辞职做美食网站现代建筑风格特点
  • 论坛网站论坛网站建设建设自己做网站能否赚钱6
  • 网站物理结构优化包含网页优化吗百度下载免费安装到桌面
  • 东莞网站优化排名系统石家庄网站建设联系电话
  • 做下载网站有哪些建设网站需要做app吗
  • 外国网站加速器渭南市建设工程有限责任公司
  • 企业网站seo最好方法北京装饰公司名录
  • 阿里云网站备案幕布郴州市建设网站
  • 地税网站如何做税种确认手机网站制作流程图
  • 优秀网站架构百度网站的优势
  • 贵州政务网站建设规范网站开发常用技术
  • 现实有有哪里学做网站的app开发费用预算表格
  • 网站设计模板免费下载wordpress从数据库删除插件
  • 怎么做自己微信的网站2017网站建设
  • 台州哪里做网站wordpress4.8 汉化
  • 17网站一起做网店怎么下单wordpress 联系
  • 网站快照不更新原因必应搜索引擎网站
  • 西安网站制作顶尖装修设计装饰