当前位置: 首页 > news >正文

网站数据库是什么互联网外包平台

网站数据库是什么,互联网外包平台,手机网页链接制作生成,做一个网站价格CNN(练习数据集) 1.导包:2.导入数据集:3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:4. 查看数据集中的一部分图像,以及它们对应的标签:5.迭代数据集 train_ds&#xff0…

CNN(练习数据集)

  • 1.导包:
  • 2.导入数据集:
  • 3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:
  • 4. 查看数据集中的一部分图像,以及它们对应的标签:
  • 5.迭代数据集 train_ds,以便查看第一批图像和标签的形状:
  • 6.使用TensorFlow的ImageDataGenerator类来创建一个数据增强的对象:
  • 7.将数据集缓存到内存中,加快速度:
  • 8. 通过卷积层和池化层提取特征,再通过全连接层进行分类:
  • 9.打印网络结构:
  • 10.设置优化器,定义了训练轮次和批量大小:
  • 11.训练数据集:
  • 12.画出图像:
  • 13.评估您的模型在验证数据集的性能:
  • 14.输出在验证集上的预测结果和真实值的对比:
  • 15.输出可视化报表:

  • 在网上寻找一个新的数据集,自己进行训练

1.导包:

import pandas as pd
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt
import pickle
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models

输出结果:
在这里插入图片描述

2.导入数据集:

# 定义超参数
data_dir = "D:\JUANJI"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)
batch_size = 30
img_height = 180
img_width = 180

输出结果:
在这里插入图片描述

3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:

#  使用image_dataset_from_directory()将数据加载到tf.data.Dataset中
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,  # 验证集0.2subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)

输出结果:
在这里插入图片描述

4. 查看数据集中的一部分图像,以及它们对应的标签:

class_names = train_ds.class_names
print(class_names)
# 可视化
plt.figure(figsize=(16, 8))
for images, labels in train_ds.take(1):for i in range(16):ax = plt.subplot(4, 4, i + 1)# plt.imshow(images[i], cmap=plt.cm.binary)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")
plt.show()

输出结果:
在这里插入图片描述
在这里插入图片描述

5.迭代数据集 train_ds,以便查看第一批图像和标签的形状:

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break

输出结果:
在这里插入图片描述

6.使用TensorFlow的ImageDataGenerator类来创建一个数据增强的对象:

aug = ImageDataGenerator(rotation_range=30, width_shift_range=0.1,height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,horizontal_flip=True, fill_mode="nearest")
x = aug.flow(image_batch, labels_batch)
AUTOTUNE = tf.data.AUTOTUNE

输出结果:
在这里插入图片描述

7.将数据集缓存到内存中,加快速度:

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

输出结果:
在这里插入图片描述

8. 通过卷积层和池化层提取特征,再通过全连接层进行分类:

# 为了增加模型的泛化能力,增加了Dropout层,并将最大池化层更新为平均池化层
num_classes = 3
model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width, 3)),layers.Conv2D(32, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(128, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(256, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Flatten(),layers.Dense(512, activation='relu'),layers.Dense(num_classes)
])

输出结果:
在这里插入图片描述

9.打印网络结构:

model.summary()

输出结果:
在这里插入图片描述

10.设置优化器,定义了训练轮次和批量大小:

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])EPOCHS = 100
BS = 5

输出结果:
在这里插入图片描述

11.训练数据集:

# 训练网络
# model.fit 可同时处理训练和即时扩充的增强数据。
# 我们必须将训练数据作为第一个参数传递给生成器。生成器将根据我们先前进行的设置生成批量的增强训练数据。
for images_train, labels_train in train_ds:continue
for images_test, labels_test in val_ds:continue
history = model.fit(x=aug.flow(images_train,labels_train, batch_size=BS),validation_data=(images_test,labels_test),
steps_per_epoch=1,epochs=EPOCHS)

输出结果:
在这里插入图片描述

12.画出图像:

# 画出训练精确度和损失图
N = np.arange(0, EPOCHS)
plt.style.use("ggplot")
plt.figure()
plt.plot(N, history.history["loss"], label="train_loss")
plt.plot(N, history.history["val_loss"], label="val_loss")
plt.plot(N, history.history["accuracy"], label="train_acc")
plt.plot(N, history.history["val_accuracy"], label="val_acc")
plt.title("Aug Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc='upper right')  # legend显示位置
plt.show()

输出结果:
在这里插入图片描述

13.评估您的模型在验证数据集的性能:

test_loss, test_acc = model.evaluate(val_ds, verbose=2)
print(test_loss, test_acc)

输出结果:
在这里插入图片描述

14.输出在验证集上的预测结果和真实值的对比:

#  优化2 输出在验证集上的预测结果和真实值的对比
pre = model.predict(val_ds)
for images, labels in val_ds.take(1):for i in range(4):ax = plt.subplot(1, 4, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.xticks([])plt.yticks([])# plt.xlabel('pre: ' + class_names[np.argmax(pre[i])] + ' real: ' + class_names[labels[i]])plt.xlabel('pre: ' + class_names[np.argmax(pre[i])])print('pre: ' + str(class_names[np.argmax(pre[i])]) + ' real: ' + class_names[labels[i]])
plt.show()

输出结果:
在这里插入图片描述

15.输出可视化报表:

print(labels_test)
print(labels)
print(pre)
print(class_names)
from sklearn.metrics import classification_report
# 优化1 输出可视化报表
print(classification_report(labels_test,pre.argmax(axis=1),
target_names=class_names))

输出结果:
在这里插入图片描述

http://www.yayakq.cn/news/610642/

相关文章:

  • 建站公司佛山网站直播是未开票收入怎么做
  • 静态网站开发的目的做网站py和php
  • wordpress外贸站国内最新新闻十篇
  • 单位网站开发合同范本网站基建建设
  • 像优酷这样的网站需要怎么做wordpress技术类模板下载
  • “青岛今晚12时封城”湖北seo公司
  • 定制网站开发接私活域名备案 个人 网站基本信息查询
  • wordpress多站点可视化网站建设的职称
  • 正能量晚上看的网站2021青岛营销型网站设计公司
  • 西安哪个公司可以做网站本科自考什么机构比较正规
  • 做网站你们用什么浏览器北京工装装修公司
  • tp5企业网站开发视频wordpress文章图片灯箱
  • 淘客做网站怎么备案深圳市建设工程交易服务中心宝安分中心
  • 网站建设综合实训心得体会西安有什么好玩的好吃的
  • 大连网站建站四库一平台建造师业绩查询
  • 有哪些档案网站可以自己做网站服务器不
  • 北京网站设计提供商虚拟主机怎么做网站
  • 想创办一个本地的人才招聘网站_如何做市场调查问卷黄金网站app免费视频下载
  • 石家庄网站建设求职简历烤漆 东莞网站建设
  • 做网站推广怎么做wordpress管理面板
  • 自学网站开发难吗企业网站分为哪三种类型
  • 长沙网站定制建设凡科快图网站
  • 想学网站搭建与推广烟台网站制作策划
  • 全国医院网站建设opencart做视频网站
  • 网站描述怎么设置网站模版 之星
  • 宝安西乡网站建设开发企业app公司
  • 湖南城乡建设厅官方网站新建网站百度搜不到
  • 新手学做网站12天婴二级域名怎么做网站备案
  • 网上做调查赚钱的网站微网站工程案例展示
  • 无锡中小企业网站制作网站做推广要备案吗