当前位置: 首页 > news >正文

国际物流东莞网站建设企业购物网站建设

国际物流东莞网站建设,企业购物网站建设,共享经济型网站开发,seo金融术语文章目录 图的定义和表示可以使用图数据结构的问题将图结构用于机器学习的挑战最基本的图神经网络概述汇聚操作基于信息传递的改进图神经网络全局向量信息的利用 本篇文章参考发表于Distill上的图神经网络入门博客: A Gentle Introduction to Graph Neural Network…

文章目录

    • 图的定义和表示
    • 可以使用图数据结构的问题
    • 将图结构用于机器学习的挑战
    • 最基本的图神经网络概述
    • 汇聚操作
    • 基于信息传递的改进图神经网络
    • 全局向量信息的利用

本篇文章参考发表于Distill上的图神经网络入门博客: A Gentle Introduction to Graph Neural Networks。同时,所有的图片也都来源于该博客。本文主要是记录本人自己的学习体会与心得,帮助其他初学者能够更快入门图神经网络而无需看冗长的英文原文。

图的定义和表示

在这里插入图片描述
图可以用三个符号进行表示:

  • 顶点集(V):图中的所有顶点构成一个顶点集;
  • 边集(E):图中的所有边构成一个边集;
  • 图整体(U):完整考虑一个图的所有顶点和边以及对应的拓扑结构,图的整体被称为U。

在计算机中,无论是顶点集、边集或者图整体都可以使用向量进行表示。顶点向量中的各个值表示顶点的属性;边向量中的各个值表示边的属性;图向量同理。

另外,一张图也可以使用离散数学中的邻接矩阵进行表示,具体内容可以参见离散数学课程教材。

很多现实中的问题,都可以把问题中的实体转化为图的顶点,把实体之间的关系转换为图中的边,从而使用图来表示该现实问题。

可以使用图数据结构的问题

可以使用图数据结构的问题可以分为三个类型,分别是图层面的问题、顶点层面的问题和边层面的问题。

  • 图层面的问题:找出含有两个环的图;
    在这里插入图片描述

  • 顶点层面的问题:将图中的所有顶点划分为两类;
    在这里插入图片描述

  • 边层面的问题:给图中的所有边判定类型。
    在这里插入图片描述

将图结构用于机器学习的挑战

将图结构应用于机器学习领域的最大挑战是如何表示图结构,使得其能够与搭建的神经网络兼容,并被计算机计算和处理。

图结构中包含有四类信息:顶点集信息、边集信息、图整体信息和连接性信息。前面三种类型的信息都可以通过向量或矩阵的方式进行表示,但是连接性信息的表示会更加麻烦。

表示连接性的最直观方法就是使用邻接矩阵,但是很多情况下邻接矩阵都是稀疏的,因此会无意义地占用非常大的存储空间。即使通过稀疏化的方式表示邻接矩阵也会有计算机难以处理的问题。

为此,可以通过邻接表的形式表示邻接矩阵。邻接表的大小与边的数量成正比,其中的每一个元素记录了哪两个顶点之间存在一条边。

在这里插入图片描述
下面将正式开始介绍图神经网络。

最基本的图神经网络概述

图神经网络本质上就是一个特用于图模型的神经网络。

图神经网络的基本思路如下:由于上面我们已经提到,图中除了连通性信息外,其他的三个属性(顶点集、边集和整体)都可以用能够代入神经网络进行计算的向量来进行表示,因此,我们对于三类属性,分别构造一个神经网络。

也就是说,一个神经网络以顶点集向量作为输入,一个神经网络以边集向量作为输入,另一个神经网络以整体向量作为输入。这样的三个网络组合在一起,就构成了图神经网络的一个层。多个图神经网络层叠加在一起,就构成了完整的图神经网络。

需要注意的有两点:首先,是每一个图神经网络层中的神经网络的输出形状都与输入形状相同,也就是说,输入的向量长度和输出的向量长度相同;其次,对于图的连通性,图神经网络不会对其进行修改,也就是说,一张图经过了图神经网络,其连通性不会发生改变:原来相连的两个顶点仍然相互连接。

面对分类任务,只需要在最后一层输出加上全连接层和softmax分类即可。基本原理也如下图所示:

在这里插入图片描述

汇聚操作

有时在实际问题中会遇到一些特殊的情况,使得无法同时获得顶点集的向量、边集的向量和整体的向量,这个时候,就可以使用汇聚的思想来补充生成当前没有的向量。下面将以缺失顶点集为例进行说明,其他情况可以类比推理。

当顶点集缺失时,每一个顶点连接了多条边,因此可以把每个顶点连接的多条边的向量进行叠加,最后再加上整体的向量,即可替代该顶点的向量。

在这里插入图片描述

基于信息传递的改进图神经网络

上面所提到的基本图神经网络存在一个问题,那就是没有利用图的连通性,从而损失了图中的一部分信息。

为了能够利用连通性,下面将给出一种基于信息传递的改进的图神经网络。

以顶点集为例。在改进的网络中,当一个顶点的向量需要准备待入顶点对应的神经网络进行更新时,并不是直接将该点的结果代入,而是将该顶点以及与该顶点直接相连的顶点的向量相加后进行代入,从而利用上之前未被利用的连通性信息。

边集的信息传递改进图神经网络原理类似。

全局向量信息的利用

之前的介绍中,我们只是说了全局向量是需要计算的以及其计算方法,但是并没有介绍其使用过程,下面将进行介绍。

全局向量可以抽象为一个虚拟的顶点(被称为master node),该顶点与图中的所有顶点相连,同时与图中的所有边相连(点如何与边相连?这是因为这个顶点是抽象的,也可以把这个虚拟顶点想象为一个又是顶点又是边的东西)。

基于上面介绍的信息传递的原理,每次该虚拟顶点在经过全局神经网络更新之前,需要叠加图中当前状态其他所有顶点和边的向量信息。通过这样的方式,就成功利用了图的全局信息。

在这里插入图片描述

http://www.yayakq.cn/news/178470/

相关文章:

  • 天峻县公司网站建设做广告的公司
  • 深圳 网站建设设计中核二三建设有限公司
  • 企业公众号以及网站建设平面设计需要学什么软件?
  • 旅游网站设计新手互联网创业项目
  • 盗qq的钓鱼网站怎么做郑州旅游网站建设
  • 石家庄市制作网站公司东莞建设工程信息网
  • 建设厅网站举报工程管理咨询公司
  • 英文网站开发哪家好丹阳网站制作
  • 电商网站的付款功能英文网站建站
  • 哪个网站美丽乡村做的比较好商务网站建设与维护 ppt
  • 宁波制作网站企业百度浏览器官网
  • 请别人做网站需要注意什么网站背景怎么换
  • 做网站服务器e3.net电商网站开发设计
  • 页面设计制作网站h5个人网页设计心得
  • 一个app能卖多少钱seo研究中心超逸seo
  • 站群优化公司平面设计实习报告
  • 艺阳科技网站建设百度推广太原网站建设
  • 网站开发技术 北京网站开发需要学习什么技术
  • 高邮做网站贵州十大广告公司
  • 关于单位建设网站的申请提示网站建设页面
  • 河南省建设厅网站打不开互联网站平台有哪些
  • 视频门户网站建设项目标书在线阅读小说网站开发
  • 建设网站需要准备哪些内容做pc端网站资讯
  • 沧州做网站wordpress 多语言版本号
  • 公司做网站收费360打不开建设银行的网站
  • 宁波自助建站系统做网站卖链接
  • 建设网站的视频视频网站 不备案
  • 南通网站制作淮南公司网站建设
  • 自建网站阿里云备案通过后怎么做asp网站发送邮件
  • 东莞工程网站建设php网站建设详细教程