当前位置: 首页 > news >正文

外贸推广网站公司国内域名备案

外贸推广网站公司,国内域名备案,成都网站托管,地产主视觉设计网站VOC数据图像和标签一起进行Resize 参加检测比赛的时候,很多时候工业原始数据尺度都比较大,如果对数据不提前进行处理,会导致数据在加载进内存时花费大量的时间,所以在执行训练程序之前需要将图像提前进行预处理。对于目标检测的数…

VOC数据图像和标签一起进行Resize

参加检测比赛的时候,很多时候工业原始数据尺度都比较大,如果对数据不提前进行处理,会导致数据在加载进内存时花费大量的时间,所以在执行训练程序之前需要将图像提前进行预处理。对于目标检测的数据,不只是将原始数据进行resize,边界框的坐标也要跟随一起进行resize。

如下,是今天测试需要用到的原始图像和他的标签。

2007_002266

<annotation><folder>VOC2012</folder><filename>2007_002266.jpg</filename><source><database>The VOC2007 Database</database><annotation>PASCAL VOC2007</annotation><image>flickr</image></source><size><width>500</width><height>373</height><depth>3</depth></size><segmented>1</segmented><object><name>aeroplane</name><pose>Rear</pose><truncated>1</truncated><difficult>0</difficult><bndbox><xmin>231</xmin><ymin>251</ymin><xmax>458</xmax><ymax>346</ymax></bndbox></object><object><name>aeroplane</name><pose>Left</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>5</xmin><ymin>118</ymin><xmax>499</xmax><ymax>258</ymax></bndbox></object>
</annotation>

等比例缩放之后的结果如下。

result

单张图像resize

单张进行预处理的脚本如下。

# -*- coding: utf-8 -*-
# @File  : PreProcessing.py
# @Author: 肆十二
# @Date  : 2023/12/24
# @Desc  : 同步缩放图片(等比例缩放无失真)和xml文件标注的anchor size
import glob
import xml.dom.minidom
import cv2img = cv2.imread("./demo.jpg")
height, width = img.shape[:2]# 定义缩放信息 以等比例缩放到416为例
scale=416/height
height=416
width=int(width*scale)dom = xml.dom.minidom.parse("./demo.xml")
root = dom.documentElement# 读取标注目标框
objects = root.getElementsByTagName("bndbox")for object in objects:xmin=object.getElementsByTagName("xmin")xmin_data=int(float(xmin[0].firstChild.data))# xmin[0].firstChild.data =str(int(xmin1 * x))ymin =object.getElementsByTagName("ymin")ymin_data = int(float(ymin[0].firstChild.data))xmax=object.getElementsByTagName("xmax")xmax_data = int(float(xmax[0].firstChild.data))ymax=object.getElementsByTagName("ymax")ymax_data = int(float(ymax[0].firstChild.data))# 更新xmlwidth_xml=root.getElementsByTagName("width")width_xml[0].firstChild.data=widthheight_xml = root.getElementsByTagName("height")height_xml[0].firstChild.data = heightxmin[0].firstChild.data = int(xmin_data*scale)ymin[0].firstChild.data = int(ymin_data*scale)xmax[0].firstChild.data = int(xmax_data*scale)ymax[0].firstChild.data = int(ymax_data*scale)# 另存更新后的文件with open('demo2.xml', 'w') as f:dom.writexml(f, addindent='  ', encoding='utf-8')# 测试缩放效果img = cv2.resize(img, (width, height))# xmin, ymin, xmax, ymax分别为xml读取的坐标信息left_top = (int(xmin_data*scale), int(ymin_data*scale))right_down= (int(xmax_data*scale), int(ymax_data*scale))cv2.rectangle(img, left_top, right_down, (255, 0, 0), 1)cv2.imwrite("result.jpg",img)

批量resize

下面是批量对VOC格式数据集进行预处理的脚本,处理之后划分为37的比例就可以进行模型训练了。

import glob
import xml.dom.minidom
import cv2
from PIL import Image
import matplotlib.pyplot as plt
import os# 定义待批量裁剪图像的路径地址
IMAGE_INPUT_PATH = r'D:\code\data\JPEGImages'
XML_INPUT_PATH = r'D:\code\data\Annotations_new'
# 定义裁剪后的图像存放地址
IMAGE_OUTPUT_PATH = r'D:\code\data\JPEGImages_out'
XML_OUTPUT_PATH = r'D:\code\data\Annotations_out'
imglist = os.listdir(IMAGE_INPUT_PATH)
xmllist = os.listdir(XML_INPUT_PATH)for i in range(len(imglist)):# 每个图像全路径,这里有改进的空间image_input_fullname = IMAGE_INPUT_PATH + '/' + imglist[i]# xml_input_fullname = XML_INPUT_PATH + '/' + xmllist[i] xml_input_fullname = XML_INPUT_PATH + '/' + imglist[i].replace("jpg", "xml")image_output_fullname = IMAGE_OUTPUT_PATH + '/' + imglist[i]xml_output_fullname = XML_OUTPUT_PATH + '/' + xmllist[i]img = cv2.imread(image_input_fullname)height, width = img.shape[:2]# 定义缩放信息 以等比例缩放到416为例scale=400/heightheight=400width=int(width*scale)dom = xml.dom.minidom.parse(xml_input_fullname)root = dom.documentElement# 读取标注目标框objects = root.getElementsByTagName("bndbox")for object in objects:xmin=object.getElementsByTagName("xmin")xmin_data=int(float(xmin[0].firstChild.data))# xmin[0].firstChild.data =str(int(xmin1 * x))ymin =object.getElementsByTagName("ymin")ymin_data = int(float(ymin[0].firstChild.data))xmax=object.getElementsByTagName("xmax")xmax_data = int(float(xmax[0].firstChild.data))ymax=object.getElementsByTagName("ymax")ymax_data = int(float(ymax[0].firstChild.data))# 更新xmlwidth_xml=root.getElementsByTagName("width")width_xml[0].firstChild.data=widthheight_xml = root.getElementsByTagName("height")height_xml[0].firstChild.data = heightxmin[0].firstChild.data = int(xmin_data*scale)ymin[0].firstChild.data = int(ymin_data*scale)xmax[0].firstChild.data = int(xmax_data*scale)ymax[0].firstChild.data = int(ymax_data*scale)# 另存更新后的文件with open(xml_output_fullname, 'w') as f:dom.writexml(f, addindent='  ', encoding='utf-8')# 测试缩放效果img = cv2.resize(img, (width, height))'''# xmin, ymin, xmax, ymax分别为xml读取的坐标信息left_top = (int(xmin_data*scale), int(ymin_data*scale))right_down= (int(xmax_data*scale), int(ymax_data*scale))cv2.rectangle(img, left_top, right_down, (255, 0, 0), 1)'''cv2.imwrite(image_output_fullname,img)

总结

当前的目标检测框架中,模型方面基本都已经固定下来,YOLO或者RCNN,靠模型很难取得大规模的增点,所以这个时候从图像的角度进行入手显得非常重要,这里推荐大家使用一个专业的切图工具。

链接如下:GitHub - obss/sahi: Framework agnostic sliced/tiled inference + interactive ui + error analysis plots

碎碎念:数据预处理真的很关键啊,好的数据预处理真的可以节省大量的时间。

http://www.yayakq.cn/news/210916/

相关文章:

  • 中交建设招标有限公司网站wordpress主题价格
  • 2017年网站设计趋势wordpress音乐外链
  • 爱站工具包手机版做美团网站代码
  • 网站跳出率 查询南京量身营销型网站设计
  • 网站建设策划书 备案做佣金单网站
  • 湖南省建设工程造价管理总站网站网站建设所需材料
  • 有没有代加工的网站中国建筑出版在线官网
  • 东莞php网站建设价格网页编辑器dw
  • 怎样做免费商城网站如何给喜欢的明星做网站
  • 临沂网站建设设计系统管理主要包括哪些内容
  • 怎么做网站的地图页成都哪里好玩
  • 网站开发标准工厂找订单哪个平台最好
  • 建网站做代理ip成都市网站设
  • 小企业网站建设的小知识如何做公司介绍视频网站
  • 医院 网站建设 新闻兰州做网络优化
  • 网站建设开发价格高吗极路由 做网站
  • 有些网站下方只有版权没有ICPppt设计培训班
  • 网站地址查询ip商丘企业网站建设服务
  • 中国建设银行网站下载安装网站安全代维
  • 网站上网络营销营销策划思路
  • 学前教育网站建设规划建立一个网站
  • 网站开发框架 知乎宁波关键词优化平台
  • 水资源论证网站建设WordPress stock
  • 网站运营做的是什么工作网站开发需求文档怎么写
  • 深圳住房建设局网站首页建设网站需要了解什么
  • 做自己的网站的一般步骤长沙网站建立公司
  • 自己做团购网站怎么样网站支持asp
  • 网站建设软件开发工作室整站模板高端网站建设策划
  • 广西做网站建设的公司网站建设实施计划书
  • 网站建设公司.开发一个官方网站要多少钱