当前位置: 首页 > news >正文

网站ui案例服装设计公司有什么职位

网站ui案例,服装设计公司有什么职位,制作图官网,房地产网站开发商YOLOv7 1 摘要2 网络架构3 改进点4 和YOLOv4及YOLOR的对比 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】【第2篇:YOLO系列论文、代码和主要优缺点汇总】【第3篇:YOLOv1——YOLO的开山之作】【第…

YOLOv7

  • 1 摘要
  • 2 网络架构
  • 3 改进点
  • 4 和YOLOv4及YOLOR的对比


YOLO系列博文:

  1. 【第1篇:概述物体检测算法发展史、YOLO应用领域、评价指标和NMS】
  2. 【第2篇:YOLO系列论文、代码和主要优缺点汇总】
  3. 【第3篇:YOLOv1——YOLO的开山之作】
  4. 【第4篇:YOLOv2——更好、更快、更强】
  5. 【第5篇:YOLOv3——多尺度预测】
  6. 【第6篇:YOLOv4——最优速度和精度】
  7. 【第7篇:YOLOv5——使用Pytorch框架、AutoAnchor、多尺度预训练模型】
  8. 【第8篇:YOLOv6——更高的并行度、引入量化和蒸馏以提高性能加速推理】
  9. 【第9篇:YOLOv7——跨尺度特征融合】
  10. 【第10篇:YOLOv8——集成检测、分割和跟踪能力】
  11. 【第11篇:YOLO变体——YOLO+Transformers、DAMO、PP、NAS】
  12. 【第12篇:YOLOv9——可编程梯度信息(PGI)+广义高效层聚合网络(GELAN)】
  13. 【第13篇:YOLOv10——实时端到端物体检测】
  14. 【第14篇:YOLOv11——在速度和准确性方面具有无与伦比的性能】
  15. 【第15篇(完结):讨论和未来展望】

1 摘要

  • 发表日期:2022年7月
  • 作者:Wong Kin-Yiu, Alexey Bochkovskiy, Chien-Yao Wang
  • 论文:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
  • 代码:https://github.com/WongKinYiu/yolov7
  • 主要优缺点
    • 在COCO数据集上达到新的速度与精度平衡;
    • 跨尺度特征融合提高对不同尺度物体的检测能力;
    • 改进训练过程中的标签分配方式提高训练效率。

2 网络架构

2022年7月,YOLOv7由YOLOv4和YOLOR的同一组作者发布在ArXiv上。当时,它在5 FPS到160 FPS的速度范围内,在速度和精度上超过了所有已知的目标检测器。与YOLOv4一样,它仅使用MS COCO数据集进行训练,而没有使用预训练的Backbone。YOLOv7提出了一些架构上的改进和一系列bag-of-freebies,这些改进提高了准确性,但不影响推理速度,只增加了训练时间。

下图展示了YOLOv7的详细架构。

网络架构

3 改进点

YOLOv7的架构变化包括:

  • 扩展高效层聚合网络(E-ELAN):ELAN是一种通过控制最短最长梯度路径,使深度模型能够更高效地学习和收敛的策略。YOLOv7提出了E-ELAN,适用于具有无限堆叠计算块的模型。E-ELAN通过打乱和合并基数来结合不同组的特征,增强网络的学习能力,而不破坏原始的梯度路径。
  • 基于拼接模型的模型缩放:通过调整一些模型属性生成不同大小的模型。YOLOv7的架构是基于拼接的架构,在这种架构中,标准的缩放技术(如深度缩放)会导致过渡层输入通道和输出通道之间的比例变化,从而导致模型硬件利用率的下降。YOLOv7提出了一种新的缩放策略,其中块的深度和宽度以相同的因子缩放,以保持模型的最佳结构。

YOLOv7中使用的bag-of-freebies包括:

  • 计划重参数化卷积:类似于YOLOv6,YOLOv7的架构也受到重参数化卷积(RepConv)[98] 的启发。然而,他们发现RepConv中的恒等连接会破坏ResNet [61] 中的残差和DenseNet [109] 中的拼接。因此,他们移除了恒等连接,并将其称为RepConvN。
  • 辅助头的粗标签分配和主头的细标签分配:主头负责最终输出,而辅助头则帮助训练。
  • 卷积-批量归一化-激活中的批量归一化:这将批量归一化的均值和方差集成到卷积层的偏置和权重中,以便在推理阶段使用。
  • 受YOLOR启发的隐性知识
  • **指数移动平均(EMA)**作为最终推理模型。

4 和YOLOv4及YOLOR的对比

YOLOv7相对于同一组作者开发的先前YOLO模型的改进如下:

  • 与YOLOv4相比,YOLOv7参数量减少了75%,计算量减少36%,同时AP提高了1.5%。
  • 与YOLOv4-tiny相比,YOLOv7-tiny分别减少了39%的参数量和49%的计算量,同时保持了相同的AP。
  • 与YOLOR相比,YOLOv7分别减少了43%的参数量和15%的计算量,并且AP略微提高了0.4%。

在MS COCO 2017测试开发集上的评估显示,YOLOv7-E6在输入尺寸为1280像素的情况下,在NVIDIA V100上以50 FPS的速度达到了55.9%的AP和73.5%的AP50。

http://www.yayakq.cn/news/159753/

相关文章:

  • 深圳网站建设公司pestl分析国家城乡和住房建设部网站首页
  • 做网站意义和目的合肥前端开发培训机构
  • 深圳响应式建站备案号怎么放到网站
  • 高校校园网站建设培训班thinkphp 网站设置功能
  • 找在家做的兼职上什么网站好昆明房产信息网
  • 分类信息网站开发教程网站需求分析报告
  • 那些网站主做玄幻小说企业网络推广情况介绍
  • 苏州定制建站网站建设猪八戒网logo设计
  • wordpress更改域名网页走失东莞网站优化找哪家
  • 网站推广策划方案模板网络推广员的前景
  • 江阴网站优化天山网官网
  • 深圳建筑设计平台网站wordpress产品模板
  • 做外包网站搭建免费设计logo图标生成器
  • 网站开发要什么基础wordpress实现自动重定向
  • html5 网站源码wordpress 插件激活
  • 淘宝网站建设基本流程图青岛网站制作
  • 涟源网站设计wordpress 采集 发布
  • 东莞seo网站关键词优优化网站建设酷隆
  • com网站注册电商网站开发定制
  • 代加工厂找订单的网站盘锦微信网站建设
  • 深圳个人网站设计域名申请通过了网站怎么做
  • 自己做网站接广告青岛个人建站模板
  • 天河区门户网站招生考试php网站开发实例教程代码
  • 网站推广方式和手段四川 优质高职建设网站
  • 有个可以做图片的网站wordpress php学习
  • 怎么在网站上做外链芜湖市建设办网站
  • 湛江的网站建设公司著名设计网站deviantart的id模板
  • 顺德网站制作案例价格wordpress5无法创建目录
  • 昆明网站优化做电商网站企业
  • 网站建设发布ps科技感网站建设功能要求