当前位置: 首页 > news >正文

iis 创建网站网站系统环境的搭建

iis 创建网站,网站系统环境的搭建,东道设计官网,个人商城网站制作费用pytorch使用技巧 1. 指定GPU编号 设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0os.environ["CUDA_VISIBLE_DEVICES"] "0" 设置当前使用的GPU设备为0, 1号两个设备,名称依次为 /gpu:0、/gpu:1: os.environ[&quo…
pytorch使用技巧

1. 指定GPU编号

设置当前使用的GPU设备仅为0号设备,设备名称为 /gpu:0os.environ["CUDA_VISIBLE_DEVICES"] = "0"

设置当前使用的GPU设备为0, 1号两个设备,名称依次为 /gpu:0/gpu:1: 
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" ,根据顺序表示优先使用0号设备,然后使用1号设备。

2. 查看模型每层输出详情

Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。

from torchsummary import summarysummary(your_model, input_size=(channels, H, W))

input_size 是根据你自己的网络模型的输入尺寸进行设置。

https://github.com/sksq96/pytorch-summary

3. 梯度裁剪(Gradient Clipping)

import torch.nn as nn
outputs = model(data)loss= loss_fn(outputs, target)optimizer.zero_grad()loss.backward()nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)optimizer.step()

nn.utils.clip_grad_norm_ 的参数:

  • parameters – 一个基于变量的迭代器,会进行梯度归一化

  • max_norm – 梯度的最大范数

  • norm_type – 规定范数的类型,默认为L2

4. 扩展单张图片维度

因为在训练时的数据维度一般都是 (batch_size, c, h, w),而在测试时只输入一张图片,所以需要扩展维度,扩展维度有多个方法:

import cv2import torch
image = cv2.imread(img_path)image = torch.tensor(image)print(image.size())
img = image.view(1, *image.size())print(img.size())
# output:# torch.Size([h, w, c])# torch.Size([1, h, w, c])

import cv2import numpy as np
image = cv2.imread(img_path)print(image.shape)img = image[np.newaxis, :, :, :]print(img.shape)
# output:# (h, w, c)# (1, h, w, c)
import cv2import torch
image = cv2.imread(img_path)image = torch.tensor(image)print(image.size())
img = image.unsqueeze(dim=0)  print(img.size())
img = img.squeeze(dim=0)print(img.size())
# output:# torch.Size([(h, w, c)])# torch.Size([1, h, w, c])# torch.Size([h, w, c])

tensor.unsqueeze(dim):扩展维度,dim指定扩展哪个维度。

tensor.squeeze(dim):去除dim指定的且size为1的维度,维度大于1时,squeeze()不起作用,不指定dim时,去除所有size为1的维度。

5. 独热编码

在PyTorch中使用交叉熵损失函数的时候会自动把label转化成onehot,所以不用手动转化,而使用MSE需要手动转化成onehot编码。

import torchclass_num = 8batch_size = 4
def one_hot(label):    """    将一维列表转换为独热编码    """    label = label.resize_(batch_size, 1)    m_zeros = torch.zeros(batch_size, class_num)    # 从 value 中取值,然后根据 dim 和 index 给相应位置赋值    onehot = m_zeros.scatter_(1, label, 1)  # (dim,index,value)
    return onehot.numpy()  # Tensor -> Numpy
label = torch.LongTensor(batch_size).random_() % class_num  # 对随机数取余print(one_hot(label))
# output:[[0. 0. 0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0.]]

6. 防止验证模型时爆显存

验证模型时不需要求导,即不需要梯度计算,关闭autograd,可以提高速度,节约内存。如果不关闭可能会爆显存。

with torch.no_grad():    # 使用model进行预测的代码    pass

意思就是PyTorch的缓存分配器会事先分配一些固定的显存,即使实际上tensors并没有使用完这些显存,这些显存也不能被其他应用使用。这个分配过程由第一次CUDA内存访问触发的。

而 torch.cuda.empty_cache() 的作用就是释放缓存分配器当前持有的且未占用的缓存显存,以便这些显存可以被其他GPU应用程序中使用,并且通过 nvidia-smi命令可见。注意使用此命令不会释放tensors占用的显存。

对于不用的数据变量,Pytorch 可以自动进行回收从而释放相应的显存。

7. 学习率衰减

import torch.optim as optimfrom torch.optim import lr_scheduler
# 训练前的初始化optimizer = optim.Adam(net.parameters(), lr=0.001)scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1)  # # 每过10个epoch,学习率乘以0.1
# 训练过程中for n in n_epoch:    scheduler.step()    ...

8. 冻结某些层的参数

参考:Pytorch 冻结预训练模型的某一层
https://www.zhihu.com/question/311095447/answer/589307812

在加载预训练模型的时候,我们有时想冻结前面几层,使其参数在训练过程中不发生变化。

我们需要先知道每一层的名字,通过如下代码打印:

net = Network()  # 获取自定义网络结构for name, value in net.named_parameters():    print('name: {0},\t grad: {1}'.format(name, value.requires_grad))
name: cnn.VGG_16.convolution1_1.weight,   grad: Truename: cnn.VGG_16.convolution1_1.bias,   grad: Truename: cnn.VGG_16.convolution1_2.weight,   grad: Truename: cnn.VGG_16.convolution1_2.bias,   grad: Truename: cnn.VGG_16.convolution2_1.weight,   grad: Truename: cnn.VGG_16.convolution2_1.bias,   grad: Truename: cnn.VGG_16.convolution2_2.weight,   grad: Truename: cnn.VGG_16.convolution2_2.bias,   grad: True

后面的True表示该层的参数可训练,然后我们定义一个要冻结的层的列表:

no_grad = [    'cnn.VGG_16.convolution1_1.weight',    'cnn.VGG_16.convolution1_1.bias',    'cnn.VGG_16.convolution1_2.weight',    'cnn.VGG_16.convolution1_2.bias']
net = Net.CTPN()  # 获取网络结构for name, value in net.named_parameters():    if name in no_grad:        value.requires_grad = False    else:        value.requires_grad = True
name: cnn.VGG_16.convolution1_1.weight,   grad: Falsename: cnn.VGG_16.convolution1_1.bias,   grad: Falsename: cnn.VGG_16.convolution1_2.weight,   grad: Falsename: cnn.VGG_16.convolution1_2.bias,   grad: Falsename: cnn.VGG_16.convolution2_1.weight,   grad: Truename: cnn.VGG_16.convolution2_1.bias,   grad: Truename: cnn.VGG_16.convolution2_2.weight,   grad: Truename: cnn.VGG_16.convolution2_2.bias,   grad: True

可以看到前两层的weight和bias的requires_grad都为False,表示它们不可训练。

最后在定义优化器时,只对requires_grad为True的层的参数进行更新。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)

9. 对不同层使用不同学习率

net = Network()  # 获取自定义网络结构for name, value in net.named_parameters():    print('name: {}'.format(name))
# 输出:# name: cnn.VGG_16.convolution1_1.weight# name: cnn.VGG_16.convolution1_1.bias# name: cnn.VGG_16.convolution1_2.weight# name: cnn.VGG_16.convolution1_2.bias# name: cnn.VGG_16.convolution2_1.weight# name: cnn.VGG_16.convolution2_1.bias# name: cnn.VGG_16.convolution2_2.weight# name: cnn.VGG_16.convolution2_2.bias

对 convolution1 和 convolution2 设置不同的学习率,首先将它们分开,即放到不同的列表里:

conv1_params = []conv2_params = []
for name, parms in net.named_parameters():    if "convolution1" in name:        conv1_params += [parms]    else:        conv2_params += [parms]
# 然后在优化器中进行如下操作:optimizer = optim.Adam(    [        {"params": conv1_params, 'lr': 0.01},        {"params": conv2_params, 'lr': 0.001},    ],    weight_decay=1e-3,)

我们将模型划分为两部分,存放到一个列表里,每部分就对应上面的一个字典,在字典里设置不同的学习率。当这两部分有相同的其他参数时,就将该参数放到列表外面作为全局参数,如上面的`weight_decay`。

也可以在列表外设置一个全局学习率,当各部分字典里设置了局部学习率时,就使用该学习率,否则就使用列表外的全局学习率。

http://www.yayakq.cn/news/728214/

相关文章:

  • 温州市建设质量监督站网站随身wifi网站设置
  • 建设网站与服务器wordpress删除缓存会删掉文件吗
  • 国外做动运服装的网站深圳做h5网站制作
  • 关于企业网站开发与设计论文设计公司名字怎么取
  • 有啥网站是专做时尚穿搭中山市seo点击排名软件价格
  • 商品网站建设郑州机械网站制作
  • 网站流量 收益投资公司注册资金要求
  • 网站建设佰金手指科杰十三制作代码
  • 大型o2o网站开发时间宁波网页设计多少钱
  • 个人网站 flashdz系统怎么做地方网站
  • 有些网站为什么可以做资讯烟台做网站优化
  • 怎么做谷歌收录的网站网络运营课程
  • 做海报有哪些网站临沂兰山建设局网站
  • aspcms企业网站模板网络营销外包公司的评价
  • wordpress管理员免费seo刷排名
  • 花桥网站制作网络营销的流程和方法
  • iis中的网站启动不了注册公司多少钱流程及费用
  • 做著名建筑物网站简介百度不收录新网站
  • 网站备案关站阿里企业邮箱网页版
  • 公司网站维护一般需要做什么图片渐隐 网站头部flash
  • 展示型企业网站建设免费的网站服务器
  • 用phython做网站营销印刷网站
  • 湘潭做网站价格 q磐石网络wordpress 链接格式
  • 金坛区建设工程质量监督网站合肥app开发费用
  • 设计师网站资源网站建设设计有哪些
  • 如何创建设计个人网站app拉新渠道
  • 企业网站建设免费网站开发集
  • 网站建设的外国文献吴江开发区建设局网站
  • 58同城推广能免费做网站吗东莞美容网站建设
  • 做游戏人设计网站电脑网站怎么做