当前位置: 首页 > news >正文

遂宁门户网站建设先进工作单位北京网站设计制作哪个公司好

遂宁门户网站建设先进工作单位,北京网站设计制作哪个公司好,网上购物英语作文,最新互联网平台项目SparkContext初始化 相关知识 SparkConf 是SparkContext的构造参数,储存着Spark相关的配置信息,且必须指定Master(比如Local)和AppName(应用名称),否则会抛出异常;SparkContext 是程序执行的入口&#xf…

SparkContext初始化

相关知识
  • SparkConf 是SparkContext的构造参数,储存着Spark相关的配置信息,且必须指定Master(比如Local)和AppName(应用名称),否则会抛出异常;
  • SparkContext 是程序执行的入口,一个SparkContext代表一个 Application
初始化过程的主要核心:
  1. 依据SparkConf创建一个Spark执行环境SparkEnv
  2. 创建并初始化Spark UI,方便用户监控,默认端口为 4040
  3. 设置Hadoop相关配置及Executor环境变量;
  4. 创建和启动TaskSchedulerDAGScheduler
初始化方式:
  1. SparkConf conf = new SparkConf().setAppName(appName).setMaster(master)
  2. JavaSparkContext sc=new JavaSparkContext(conf)

程序运行完后需使用sc.stop()关闭SparkContext
 

import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.SparkConf;
import java.util.Arrays;
import java.util.List;public class Edu {public static void main(String[] args) {/********** Begin **********///第一步:设置SparkConfSparkConf conf = new SparkConf().setAppName("educoder").setMaster("local");//第二步:初始化SparkContextJavaSparkContext sc = new JavaSparkContext(conf);/********** End **********/List<String> data = Arrays.asList("hello");JavaRDD<String> r1 = sc.parallelize(data);System.out.print(r1.collect());/********** Begin **********///第三步:关闭SparkContextsc.stop();/********** End **********/}
}

集合并行化创建RDD

任务描述

本关任务:计算并输出各个学生的总成绩。

相关知识

为了完成本关任务,你需要掌握:1.集合并行化创建RDD,2.reduceByKey

集合创建RDD

Spark会将集合中的数据拷贝到集群上去,形成一个分布式的数据集合,也就是一个RDD。相当于是,集合中的部分数据会到一个节点上,而另一部分数据会到其他节点上。然后就可以用并行的方式来操作这个分布式数据集合,即RDD
 

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(1);
list.add(2);
list.add(3);
  1. JavaRDD<Integer> rdd = sc.parallelize(list,3);//参数1:Seq集合,必须。参数2:分区数,默认为该Application分配到的资源的CPU核数
  2. Integer sum = rdd.reduce((a, b) -> a + b);
  3. System.out.print(sum);

输出:6

reduceByKey()

对元素为RDD[K,V]对的RDDKey相同的元素的Value进行聚合。

List<Tuple2<String,Integer>> list = Arrays.asList(new Tuple2("hive",2),new Tuple2("spark",4),new Tuple2("hive",1));
JavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);
List<Tuple2<String, Integer>> result = listRDD.reduceByKey((x, y) -> x + y).collect();

输出: (spark,4) (hive,3)

collect() :以数组的形式返回RDD中的所有元素,收集分布在各个worker的数据到driver节点。

编程要求

根据提示,在右侧编辑器begin-end处补充代码,计算并输出各个学生的总成绩。

  • ("bj",88): bj指学生姓名,88指学生成绩。
测试说明

平台会对你编写的代码进行测试:

预期输出: (bj,254) (sh,221) (gz,285)
 

package step1;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
import java.util.*;
public class JStudent {public static void main(String[] args) {SparkConf conf = new SparkConf().setMaster("local").setAppName("JStudent");JavaSparkContext sc = new JavaSparkContext(conf);List<Tuple2<String,Integer>> list = Arrays.asList(new Tuple2("bj",88),new Tuple2("sh",67),new Tuple2("gz",92),new Tuple2("bj",94),new Tuple2("sh",85),new Tuple2("gz",95),new Tuple2("bj",72),new Tuple2("sh",69),new Tuple2("gz",98));//第一步:创建RDDJavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);//第二步:把相同key的进行聚合JavaPairRDD<String, Integer> result = listRDD.reduceByKey((x, y) -> x + y);//第三步:收集List<Tuple2<String, Integer>> collect = result.collect();//第四步:输出for (Tuple2 c:collect){System.out.println(c);}sc.stop();}
}

读取外部数据集创建RDD
 

任务描述

本关任务:读取文本文件,按照文本中数据,输出老师及其出现次数。

相关知识

为了完成本关任务,你需要掌握:1.读取文件创建RDD,2.本关所需算子。

读取文件

textFile()

JavaRDD<String> rdd = sc.textFile("/home/student.txt")//文件路径
算子

(1)mapToPair:此函数会对一个RDD中的每个元素调用f函数,其中原来RDD中的每一个元素都是T类型的,调用f函数后会进行一定的操作把每个元素都转换成一个<K2,V2>类型的对象

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(1);
list.add(2);
list.add(3);
JavaRDD<Integer> rdd = sc.parallelize(list);
JavaPairRDD<Integer,String> result = rdd.mapToPair(x -> new Tuple2(x,1)

输出:(1,1)(2,1)(3,1)

(2) reduceByKey() :对元素为RDD[K,V]对的RDDKey相同的元素的Value进行聚合

List<Tuple2<String,Integer>> list = Arrays.asList(new Tuple2("hive",2),new Tuple2("spark",4),new Tuple2("hive",1));
JavaPairRDD<String, Integer> listRDD = sc.parallelizePairs(list);
List<Tuple2<String, Integer>> result = listRDD.reduceByKey((x, y) -> x + y).collect();

输出: (spark,5) (hive,3)

编程要求

根据提示,在右侧编辑器begin-end处补充代码,输出老师姓名和出现次数。

  • 输入文件样例:

bigdata,laozhang bigdata,laoduan javaee,xiaoxu

bigdata指科目,laozhang指老师名称。

预期输出: (laoliu,1) (laoli,3) (laoduan,5) (laozhang,2) (laozhao,15) (laoyang,9) (xiaoxu,4)
 

package step2;import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;import java.util.Arrays;
import java.util.List;public class JTeachers {public static void main(String[] args) {SparkConf conf = new SparkConf().setMaster("local").setAppName("JTeachers");JavaSparkContext sc = new JavaSparkContext(conf);String dataFile = "file:///root/step2_files";//第一步:以外部文件方式创建RDDJavaRDD<String> teaRDD = sc.textFile(dataFile);//String name = line.split(",")[1];//第二步:将文件中每行的数据切分,得到自己想要的返回值Integer one = 1;JavaPairRDD<String, Integer> teacher = teaRDD.mapToPair(line ->{String names = line.split(",")[1];Tuple2<String, Integer> t2 = new Tuple2<>(names, one);return t2;});//第三步:将相同的key进行聚合JavaPairRDD<String, Integer> tea = teacher.reduceByKey((x, y) -> x + y);//第四步:将结果收集起来List<Tuple2<String, Integer>> result = tea.collect();//第五步:输出for (Tuple2 t:result){System.out.println(t);}sc.stop();}
}

map算子完成转换操作

相关知识

为了完成本关任务,你需要掌握:如何使用map算子。

map

将原来RDD的每个数据项通过map中的用户自定义函数f映射转变为一个新的元素。

图中每个方框表示一个RDD分区,左侧的分区经过自定义函数f:T->U映射为右侧的新RDD分区。但是,实际只有等到Action算子触发后,这个f函数才会和其他函数在一个Stage中对数据进行运算。

map 案例
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
System.out.println("init:" + list);
JavaRDD<Integer> rdd = sc.parallelize(list);
JavaRDD<Integer> map = rdd.map(x -> x * 2);
System.out.println("result :" + map.collect());

输出:

init :[1, 2, 3, 4, 5, 6] result :[2, 4, 6, 8, 10, 12]

说明:rdd1的元素(1 , 2 , 3 , 4 , 5 , 6)经过map算子(x -> x*2)转换成了rdd2(2 , 4 , 6 , 8 , 10)

编程要求

根据提示,在右侧编辑器begin-end处补充代码,完成以下需求:

需求1:使用map算子,将rdd的数据(1, 2, 3, 4, 5)按照下面的规则进行转换操作,规则如下:

  • 偶数转换成该数的平方;

  • 奇数转换成该数的立方。

需求2:使用map算子,将rdd的数据("dog", "salmon", "salmon", "rat", "elephant")按照下面的规则进行转换操作,规则如下:

  • 将字符串与该字符串的长度组合成一个元组,例如
  1. dog --> (dog,3)
  2. salmon --> (salmon,6)
    package net.educoder;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import scala.Tuple2;
    import java.util.Arrays;
    import java.util.List;
    public class Step1 {private static SparkConf conf;private static JavaSparkContext sc;static {conf = new SparkConf().setAppName("Step1").setMaster("local");sc = new JavaSparkContext(conf);}/*** 返回JavaRDD** @return JavaRDD*/public static JavaRDD<Integer> MapRdd() {List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);JavaRDD<Integer> rdd = sc.parallelize(list);/**** 需求:使用map算子,将rdd的数据进行转换操作* 规则如下:*      偶数转换成该数的平方*      奇数转换成该数的立方**//********** begin ***********/JavaRDD<Integer> map = rdd.map(num -> {if (num % 2 == 0) {return num * num;} else {return num * num * num;}});return map;/********** end ***********/}/*** 返回JavaRDD** @return JavaRDD*/public static JavaRDD<Tuple2> MapRdd2() {List<String> list = Arrays.asList("dog", "salmon", "salmon", "rat", "elephant");JavaRDD<String> rdd = sc.parallelize(list);/**** 需求:使用map算子,将rdd的数据进行转换操作* 规则如下:*      将字符串与该字符串的长度组合成一个元组,例如:dog  -->  (dog,3),salmon   -->  (salmon,6)**//********** begin ***********/JavaRDD<Tuple2> map = rdd.map(str -> {int i = str.length();return new Tuple2(str, i);});return map;/********** end ***********/}
    }

http://www.yayakq.cn/news/671964/

相关文章:

  • 科创纵横 网站建设wordpress cron
  • 东莞营销网站建设哪个平台好网络技术服务公司
  • 衡阳建网站北京二次感染最新消息
  • 手机 pc网站开发价格工业互联网平台建设及推广指南
  • 做网站视频一般上传到哪里网站内如何@
  • 科讯cms制作网站完整教程佛山网站推广seo
  • 华意网站建设网络公司怎么样站长平台工具
  • 网站建设方案书 模版湖南网站seo公司
  • 网站开发深圳奉贤网站建设推广
  • 有些人做网站不用钱的 对吗wordpress右边小工具栏
  • 网站建设 pdf教程网站建设如何存数据
  • 做网站前提需要什么asp网站怎么下载源码
  • 7牛wordpress关键词优化seo排名
  • 企业网站推广的模式江宁网站建设
  • 网站建设案例咨询郑州短视频培训机构
  • 如何做企业网站的排名中英文网站如何做思路
  • 计算机有网站建设专业吗机械网站建设比较好的
  • 网站备案域名更改公司服务信誉好的外贸管理软件
  • 中国贸易网站有哪些网站是一个链接的页面结合吗
  • 手机网站关键词排河南搜索引擎推广价格
  • 学网站建设有用吗品牌网站建设熊掌号
  • 龙江网站开发深圳建筑设计找工作哪个招聘网站
  • 广东备案网站企业网站建设与实现的论文
  • 网站如何做即时聊天wordpress查看权限
  • 济南建站模板电子商务网站建设情况
  • 免费绘画素材网站经典编辑器wordpress
  • 成都网站建设培训班给我免费观看片在线
  • 小型网站开发语言水果香精东莞网站建设技术支持
  • 没有版权的图片网站只做dnf的网站
  • 做极速赛车网站wordpress验证主题