当前位置: 首页 > news >正文

杭州市建设工程交易中心网站视频剪辑培训班

杭州市建设工程交易中心网站,视频剪辑培训班,php开源网站管理系统,清廉企业建设PaddleHub 便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tune API,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用 零基础快速开始WindowsLinuxMac Paddle…

PaddleHub

便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tune API,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用

零基础快速开始WindowsLinuxMac

 PaddleHub 首页图像 - 文字识别chinese_ocr_db_crnn_server

chinese_ocr_db_crnn_server

类别图像 - 文字识别

网络Differentiable Binarization+CRNN

数据集icdar2015数据集

模型概述

chinese_ocr_db_crnn_server Module用于识别图片当中的汉字。其基于chinese_text_detection_db_server检测得到的文本框,继续识别文本框中的中文文字。之后对检测文本框进行角度分类。最终识别文字算法采用CRNN(Convolutional Recurrent Neural Network)即卷积递归神经网络。其是DCNN和RNN的组合,专门用于识别图像中的序列式对象。与CTC loss配合使用,进行文字识别,可以直接从文本词级或行级的标注中学习,不需要详细的字符级的标注。该Module是一个通用的OCR模型,支持直接预测。

选择模型版本进行安装

1.2.0 (最新版)

$ hub install chinese_ocr_db_crnn_server==1.2.0

chinese_ocr_db_crnn_server

模型名称chinese_ocr_db_crnn_server
类别图像-文字识别
网络Differentiable Binarization+RCNN
数据集icdar2015数据集
是否支持Fine-tuning
模型大小116MB
最新更新日期2021-05-31
数据指标mAP@0.98

一、模型基本信息

  • 应用效果展示

    • OCR文字识别场景在线体验
    • 样例结果示例:

  • 模型介绍

    • chinese_ocr_db_crnn_server Module用于识别图片当中的汉字。其基于chinese_text_detection_db_server Module 检测得到的文本框,识别文本框中的中文文字。识别文字算法采用CRNN(Convolutional Recurrent Neural Network)即卷积循环神经网络。该Module是一个通用的OCR模型,支持直接预测。

  • 更多详情参考:An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition

二、安装

  • 1、环境依赖

    • paddlepaddle >= 2.2.0

    • paddlehub >=2.2.0

    • shapely

    • pyclipper

    • $ pip install shapely pyclipper
    • 该Module依赖于第三方库shapely和pyclipper,使用该Module之前,请先安装shapely和pyclipper。
  • 2、安装

    • $ hub install chinese_ocr_db_crnn_server

三、模型API预测

  • 1、命令行预测

    • $ hub run chinese_ocr_db_crnn_server --input_path "/PATH/TO/IMAGE"
  • 2、预测代码示例

    • import paddlehub as hub
      import cv2ocr = hub.Module(name="chinese_ocr_db_crnn_server", enable_mkldnn=True)       # mkldnn加速仅在CPU下有效
      result = ocr.recognize_text(images=[cv2.imread('/PATH/TO/IMAGE')])# or
      # result = ocr.recognize_text(paths=['/PATH/TO/IMAGE'])
  • 3、API

    • def __init__(text_detector_module=None, enable_mkldnn=False)
      • 构造ChineseOCRDBCRNNServer对象

      • 参数

        • text_detector_module(str): 文字检测PaddleHub Module名字,如设置为None,则默认使用 chinese_text_detection_db_server Module。其作用为检测图片当中的文本。
        • enable_mkldnn(bool): 是否开启mkldnn加速CPU计算。该参数仅在CPU运行下设置有效。默认为False。
    • def recognize_text(images=[],paths=[],use_gpu=False,output_dir='ocr_result',visualization=False,box_thresh=0.5,text_thresh=0.5,angle_classification_thresh=0.9)
      • 预测API,检测输入图片中的所有中文文本的位置。

      • 参数

        • paths (list[str]): 图片的路径;
        • images (list[numpy.ndarray]): 图片数据,ndarray.shape 为 [H, W, C],BGR格式;
        • use_gpu (bool): 是否使用 GPU;若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量
        • box_thresh (float): 检测文本框置信度的阈值;
        • text_thresh (float): 识别中文文本置信度的阈值;
        • angle_classification_thresh(float): 文本角度分类置信度的阈值
        • visualization (bool): 是否将识别结果保存为图片文件;
        • output_dir (str): 图片的保存路径,默认设为 ocr_result;
      • 返回

        • res (list[dict]): 识别结果的列表,列表中每一个元素为 dict,各字段为:
          • data (list[dict]): 识别文本结果,列表中每一个元素为 dict,各字段为: - text(str): 识别得到的文本 - confidence(float): 识别文本结果置信度 - text_box_position(list): 文本框在原图中的像素坐标,4*2的矩阵,依次表示文本框左下、右下、右上、左上顶点的坐标 如果无识别结果则data为[]
          • save_path (str, optional): 识别结果的保存路径,如不保存图片则save_path为''

四、服务部署

  • PaddleHub Serving 可以部署一个目标检测的在线服务。

  • 第一步:启动PaddleHub Serving

    • 运行启动命令:
    • $ hub serving start -m chinese_ocr_db_crnn_server
    • 这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。

    • NOTE: 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。

  • 第二步:发送预测请求

    • 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果

    • import requests
      import json
      import cv2
      import base64def cv2_to_base64(image):data = cv2.imencode('.jpg', image)[1]return base64.b64encode(data.tostring()).decode('utf8')# 发送HTTP请求
      data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
      headers = {"Content-type": "application/json"}
      url = "http://127.0.0.1:8866/predict/chinese_ocr_db_crnn_server"
      r = requests.post(url=url, headers=headers, data=json.dumps(data))# 打印预测结果
      print(r.json()["results"])
  • Gradio App 支持

    从 PaddleHub 2.3.1 开始支持使用链接 http://127.0.0.1:8866/gradio/chinese_ocr_db_crnn_server 在浏览器中访问 chinese_ocr_db_crnn_server 的 Gradio App。

五、更新历史

  • 1.0.0

    初始发布

  • 1.0.1

    支持mkldnn加速CPU计算

  • 1.1.0

    使用三阶段模型(文本框检测-角度分类-文字识别)识别图片文字。

  • 1.1.1

    支持文本中空格识别。

  • 1.1.2

    修复检出字段无法超过30个问题。

  • 1.1.3

    移除 fluid api

  • 1.2.0

    添加 Gradio APP

http://www.yayakq.cn/news/16880/

相关文章:

  • 公司网站建设工作通知工程造价信息网站
  • 自己做的网站 怎么在网上销售蜘蛛互联网站建设
  • 搜索引擎培训班长沙seo优化方案
  • 苏州工业园区两学一做教育网站移动网站开发面试题
  • 网站注销流程境外服务器
  • 网站核验单企业管理软件代理
  • 怎么架设个人网站网上商城加盟
  • 域名交易网站如何做一个网页
  • 建设网站松岗集约化网站建设方案
  • 安徽城乡建设厅官方网站高职示范校建设网站
  • 个人网站用react做做网站是不是要备案
  • 三亚网站制广州网站建设公司怎么样
  • 怎么样建设一个网站企业展示网站如何建
  • 免费的黄冈网站有哪些代码apm搭建 wordpress
  • 海南省交通工程建设局网站长沙公司电话
  • 盐城网站设计公司百度贴吧网页版
  • 电子商务的网站建设分析销售渠道策略
  • 公司是做小程序还是做网站网站建设实训报告模板
  • 潍坊在线制作网站wordpress 动态筛选
  • 有关电商网站开发的实习报告市场监督管理局官网查询
  • 服务好的郑州网站建设代理怎么做
  • 网站seo诊断的主要内容建设房地产公司网站的费用
  • 网站空间怎么续费福州网络推广运营
  • 域名租赁网站网站流量下降
  • 南宁购物网站建设岳麓做网站的公司
  • 做界面网站用什么语言好桐乡市城乡规划建设局网站
  • 织梦网站如何做关键词虚拟主机怎么发布网站
  • 做58同城这样的网站有哪些怎样做营销型网站
  • 阿里云服务器上如何做网站阿里建设网站
  • 宾川网站建设广州网站到首页排名