当前位置: 首页 > news >正文

想要网站推广页面wordpress好用的模板下载

想要网站推广页面,wordpress好用的模板下载,网站做负载均衡,济南网站建设q.479185700惠系列文章目录 1. 文本分类与词嵌入表示,mlp来处理分类问题 2. RNN、LSTM、GRU三种方式处理文本分类问题 3. 评论情绪分类 还是得开个坑,最近搞论文,使用lstm做的ssd的cache prefetching,意味着我不能再划水了。 文章目录 系列文章…

系列文章目录

1. 文本分类与词嵌入表示,mlp来处理分类问题
2. RNN、LSTM、GRU三种方式处理文本分类问题
3. 评论情绪分类
还是得开个坑,最近搞论文,使用lstm做的ssd的cache prefetching,意味着我不能再划水了。

文章目录

  • 系列文章目录
    • [1. 文本分类与词嵌入表示,mlp来处理分类问题](https://blog.csdn.net/weixin_40293999/article/details/132864421) 2. RNN、LSTM、GRU三种方式处理文本分类问题 3. 评论情绪分类 还是得开个坑,最近搞论文,使用lstm做的ssd的cache prefetching,意味着我不能再划水了。
  • 1. 文本数据表示法与词嵌入
    • 1.1 文本是什么,如何表示?
    • 1.2 文本的词嵌入表示处理流程
    • 1.3 代码展示分词过程
    • 1.4 词嵌入表示
  • 2.简单文本分类


1. 文本数据表示法与词嵌入

torch 是做张量计算的框架,张量只能存储数字类型的值,因此无论啥样的文本(中文、英文)都不能直接用张量表示,这就引出了文本数据的表示问题,如何表示文本数据?

1.1 文本是什么,如何表示?

文本是常用的序列化数据类型之一。文本数据可以看作是一
个字符序列或词的序列。对大多数问题,我们都将文本看作
词序列。
深度学习序列模型(如RNN及其变体)能够较好的对序列化
数据建模。
深度学习序列模型(如RNN及其变体)可以解决类似以下领
域中的问题:自然语言理解、文献分类、情感分类、问答系统等。

深度学习模型并不能理解文本,因此需要将文本转换为数值
的表示形式。

将文本转换为数值表示形式的过程称为向量化过程,可以用
不同的方式来完成,

词嵌入是单词的一种数值化表示方式,一般情况下会将一个单词映射到一个高维的向量中(词向量)
来代表这个单词

‘机器学习’表示为 [1, 2, 3]
‘深度学习’表示为 [1, 3, 3]
‘日月光华’表示为 [9, 9, 6]
对于词向量,我们可以使用余弦相似度在计算机中来判断
单词之间的距离。
词嵌入用密集的分布式向量来表示每个单词。词向量表示方式依赖于单词的使用习惯,这就使得具有相似使用方式的单词具有相似的表示形式。

Glove算法是对word2vec方法的拓展,并且更为有效。

1.2 文本的词嵌入表示处理流程

每个较小的文本单元称为token,将文本分解成token的过程称为分词(tokenization)。在 Python中有很多强大的库可以用来进行分词.
one-hot(独热)编码和词嵌入是将token映射到向量最流行的两种方法。

1.3 代码展示分词过程

import torch
import numpy as np
import string
s = "Life is not easy for any of us.We must work,and above all we must believe in ourselves.We must believe that each one of us is able to do some thing well.And that we must work until we succeed."
string.punctuation
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
for c in string.punctuation:s = s.replace(c," ").lower()
去掉标点符号
s

'life is not easy for any of us we must work and above all we must believe in ourselves we must believe that each one of us is able to do some thing well and that we must work until we succeed ’

s.split()
['life','is','not','easy','for','any','of','us','we','must','work','and','above','all','we','must','believe','in','ourselves','we','must','believe','that','each','one','of','us','is','able','to','do','some','thing','well','and','that','we','must','work','until','we','succeed']

分词方式(三):n-gram
向量化:one-hot emdeding

import numpy as np
np.unique(s.split())

array([‘able’, ‘above’, ‘all’, ‘and’, ‘any’, ‘believe’, ‘do’, ‘each’,
‘easy’, ‘for’, ‘in’, ‘is’, ‘life’, ‘must’, ‘not’, ‘of’, ‘one’,
‘ourselves’, ‘some’, ‘succeed’, ‘that’, ‘thing’, ‘to’, ‘until’,
‘us’, ‘we’, ‘well’, ‘work’], dtype=‘<U9’)

vocab = dict((word,index) for index, word in enumerate(np.unique(s.split())))
vocab
建立映射关系

{‘able’: 0,
‘above’: 1,
‘all’: 2,
‘and’: 3,
‘any’: 4,
‘believe’: 5,
‘do’: 6,
‘each’: 7,
‘easy’: 8,
‘for’: 9,
‘in’: 10,
‘is’: 11,
‘life’: 12,
‘must’: 13,
‘not’: 14,
‘of’: 15,
‘one’: 16,
‘ourselves’: 17,
‘some’: 18,
‘succeed’: 19,
‘that’: 20,
‘thing’: 21,
‘to’: 22,
‘until’: 23,
‘us’: 24,
‘we’: 25,
‘well’: 26,
‘work’: 27}

这是one-hot的表示方法

for index, i in enumerate(s):b[index,i] = 1
b[0:5]
array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

1.4 词嵌入表示

import torch
em = torch.nn.Embedding(len(vocab), 20)
s_em = em(torch.LongTensor(s))
s_em.shape
torch.Size([42, 20])

2.简单文本分类

这里要说明一下,torch1.8 gpu 和 torchtext 0.90 版本,这俩个要匹配,否则安装torchtext的时候,会吧torch uninstall 再install,特别麻烦。
对应关系 ref:https://pypi.org/project/torchtext/0.14.0/
可以看到2.0的torch还没有对应的torchtext

import torch
import torchtext
from torchtext import data
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torchtext.vocab import GloVe
from torchtext.datasets import IMDB

用的是这个数据集:
IMDB:http://ai.stanford.edu/~amaas/data/sentiment/
在这里插入图片描述
是影评,包括三个标签,正向、负向和未知。
TORCHTEXT.DATASETS, 所有数据集都是子类 torch.data.Dataset, 她们继承自torch.utils.data.Dataset,并且具有split和iters实现的方法

切分数据集:

TEXT = torchtext.legacy.data.Field(lower=True, fix_length=200,batch_first=True)
LABEL = torchtext.legacy.data.Field(sequential=False)
# make splits for data
train,test = torchtext.legacy.datasets.IMDB.splits(TEXT,LABEL)

构建词嵌入:
最多容量10000个词,最小的频率是出现10次。

# 构建词表 vocab 构建train训练集的 top 10000个单词做训练, vectors用来提供预训练模型
TEXT.build_vocab(train, max_size = 10000,min_freq=10, vectors=None)
LABEL.build_vocab(train)

查看频率

TEXT.vocab.freqs

在这里插入图片描述
在这里插入图片描述
一共10002行数据,因为0是unknown, 1是padding。 超过10000的词都标记为unknown

train_iter, test_iter = torchtext.legacy.data.BucketIterator.splits((train,test),batch_size=16)

在这里插入图片描述
创建模型

class Net(nn.Module):def __init__(self):super().__init__()self.em = nn.Embedding(len(TEXT.vocab.stoi),100) # batch*200-->batch*200*100self.fc1 = nn.Linear(200*100,1024)self.fc2 = nn.Linear(1024,3)def forward(self,x):x = self.em(x)x = x.view(x.size(0), -1)x = self.fc1(x)x = F.relu(x)x = self.fc2(x)return x
model = Net()
model

在这里插入图片描述
损失函数:

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)

训练过程:这个代码是固定的,和我其它的文章里面也有很多

def fit(epoch, model, trainloader, testloader):correct = 0total = 0running_loss = 0model.train()for b in trainloader:x, y = b.text, b.labelif torch.cuda.is_available():x, y = b.text.to('cuda'), b.label.to('cuda')y_pred = model(x)loss = loss_fn(y_pred, y)optimizer.zero_grad()loss.backward()optimizer.step()with torch.no_grad():y_pred = torch.argmax(y_pred, dim=1)correct += (y_pred == y).sum().item()total += y.size(0)running_loss += loss.item()
#    exp_lr_scheduler.step()epoch_loss = running_loss / len(trainloader.dataset)epoch_acc = correct / totaltest_correct = 0test_total = 0test_running_loss = 0 model.eval()with torch.no_grad():for b in testloader:x, y = b.text, b.labelif torch.cuda.is_available():x, y = x.to('cuda'), y.to('cuda')y_pred = model(x)loss = loss_fn(y_pred, y)y_pred = torch.argmax(y_pred, dim=1)test_correct += (y_pred == y).sum().item()test_total += y.size(0)test_running_loss += loss.item()epoch_test_loss = test_running_loss / len(testloader.dataset)epoch_test_acc = test_correct / test_totalprint('epoch: ', epoch, 'loss: ', round(epoch_loss, 3),'accuracy:', round(epoch_acc, 3),'test_loss: ', round(epoch_test_loss, 3),'test_accuracy:', round(epoch_test_acc, 3))return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc

训练:

epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch,model,train_iter,test_iter)train_loss.append(epoch_loss)train_acc.append(epoch_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)

结果输出:

epoch:  0 loss:  0.046 accuracy: 0.55 test_loss:  0.041 test_accuracy: 0.618
epoch:  1 loss:  0.026 accuracy: 0.809 test_loss:  0.046 test_accuracy: 0.69
epoch:  2 loss:  0.009 accuracy: 0.945 test_loss:  0.053 test_accuracy: 0.721
epoch:  3 loss:  0.004 accuracy: 0.975 test_loss:  0.068 test_accuracy: 0.729
epoch:  4 loss:  0.002 accuracy: 0.985 test_loss:  0.115 test_accuracy: 0.708
epoch:  5 loss:  0.002 accuracy: 0.989 test_loss:  0.098 test_accuracy: 0.737
epoch:  6 loss:  0.002 accuracy: 0.991 test_loss:  0.096 test_accuracy: 0.744
epoch:  7 loss:  0.001 accuracy: 0.996 test_loss:  0.108 test_accuracy: 0.742
epoch:  8 loss:  0.001 accuracy: 0.994 test_loss:  0.12 test_accuracy: 0.744
epoch:  9 loss:  0.001 accuracy: 0.994 test_loss:  0.128 test_accuracy: 0.74
http://www.yayakq.cn/news/408968/

相关文章:

  • wordpress 调用数据库优化方案英语必修一答案
  • 平台下载素材网站开发做房产网站能赚钱吗
  • 关于网站建设文章做爰 网站
  • 清新区城乡建设局网站国外网站404错误页
  • 广州微信网站建设公司兼职网站建设招聘信息
  • 做铝板的网站网站注册商标属于哪一类
  • 怎么查看网站disallow西安网站制作建设
  • 网站建设与管理试卷 判断题wordpress怎么破解版
  • 企业画册设计排版重庆优化seo
  • 建站时网站地图怎么做网站建设费可摊几年
  • 虚拟机怎么做网站空间郑州免费网站建设哪家好
  • 国外做宠物用品的网站滨州哪里做网站
  • 郑州企业网站重庆市住房和城乡建设信息网官网
  • 扁平化颜色网站制作网站用什么软件好
  • 有什么网站做交流会新公司网站建设分录
  • 南海最新军事小红书关键词排名优化
  • 网站板块怎么做上海关键词排名优化公司
  • 在哪找做网站的ftp免费注册网站
  • 网站建设毕业设计本地wordpress 固定连接
  • 贵阳能做网站的公司无锡市太湖新城建设网站
  • 制作网站 公司百度商桥在网站
  • 青岛网站建站团队wordpress wp_enqueue_script
  • 网站制作与管理技术...163邮箱新用户注册
  • 青岛网站建设华夏海盐县建设门户网站
  • 精神文明建设专题网站大淘客网站代码
  • 如何利用模板做网站wordpress 门户主题
  • 啥是东莞网站制作公司wordpress中文版 乱码
  • 手机网站建站视频教程规划网站的思路
  • 贵州省建设局八大员报名网站南昌网站seo外包
  • 公司网站建设知乎apache建wordpress