当前位置: 首页 > news >正文

网站侧边栏设计php在线做网站

网站侧边栏设计,php在线做网站,dw个人网页制作素材,展台展厅设计文章目录 一、基于距离变换与分水岭的图像分割1、图像分割2、距离和变换与分水岭距离变换常见算法有两种分水岭变换常见的算法 3、距离变换API函数接口4、watershed 分水岭函数API接口步骤 5、代码 一、基于距离变换与分水岭的图像分割 1、图像分割 图像分割(Image Segmentat…

文章目录

  • 一、基于距离变换与分水岭的图像分割
    • 1、图像分割
    • 2、距离和变换与分水岭
      • 距离变换常见算法有两种
      • 分水岭变换常见的算法
    • 3、距离变换API函数接口
    • 4、watershed 分水岭函数API接口
      • 步骤
    • 5、代码

一、基于距离变换与分水岭的图像分割

1、图像分割

图像分割(Image Segmentation)是图像处理最重要的处理手段之一
图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。
根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans

2、距离和变换与分水岭

距离变换常见算法有两种

1、不断膨胀/ 腐蚀得到
2、基于倒角距离

分水岭变换常见的算法

分水岭法(Meyer)是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。该算法的实现可以模拟成洪水淹没的过程,图像的最低点首先被淹没,然后水逐渐淹没整个山谷。当水位到达一定高度的时候将会溢出,这时在水溢出的地方修建堤坝,重复这个过程直到整个图像上的点全部被淹没,这时所建立的一系列堤坝就成为分开各个盆地的分水岭。分水岭算法对微弱的边缘有着良好的响应,但图像中的噪声会使分水岭算法产生过分割的现象。
————————————————

基于浸泡理论实现

3、距离变换API函数接口

距离变换用于计算图像中每一个非零点像素与其周围最近的零点像素之间的距离,返回的值保存了每一个非零点与最近零点的距离信息;在图像上的体现为图像上越亮的点,代表了离零点的距离越远。

void distanceTransform( 
InputArray src,  
OutputArray dst,
OutputArray labels,
int distanceType,
int maskSize,
int labelType=DIST_LABEL_CCOMP
)

(1)src是单通道的8bit的二值图像(只有0或1)
(2)dst表示的是计算距离的输出图像,可以使单通道32bit浮点数据
(3)distanceType表示的是选取距离的类型,可以设置为
DIST_USER User defined distance
DIST_L1=1 distance = |x1-x2| + |y1-y2
DIST_L2 the simple euclidean distance
DIST_C distance = max(|x1-x2|,|y1-y2|)
DIST_L12 L1-L2 metric: distance =2(sqrt(1+x*x/2) - 1))
DIST_FAIR distance = c^2(|x|/c-log(1+|x|/c)),c = 1.3998
DIST_WELSCH distance = c2/2(1-exp(-(x/c)2)), c= 2.9846
DIST_HUBER distance = |x|<c ? x^2/2 :c(|x|-c/2), c=1.345
(4)maskSize表示的是距离变换的掩膜模板,可以设置为3,5或CV_DIST_MASK_PRECISE,对 CV_DIST_L1 或CV_DIST_C 的情况,参数值被强制设定为 3, 因为3×3 mask 给出5×5 mask 一样的结果,而且速度还更快。
DIST_MASK_3 mask=3
DIST_MASK_5 mask=5
DIST_MASK-PRECISE
(5)labels表示可选输出2维数组;
(6)labelType表示的是输出二维数组的类型,8位或者32位浮点数,图像是单一通道,并且大小与输入图像一致

4、watershed 分水岭函数API接口

void watershed( InputArray image, InputOutputArray markers );

参数说明

(1)参数 image,必须是一个8bit3通道彩色图像矩阵序列。
(2) 输入或输出32位单通道的标记,和图像一样大小。(输入高峰轮廓标记);在执行分水岭函数watershed之前,必须对第二个参数markers进行处理,它应该包含不同区域的轮廓,每个轮廓有一个自己唯一的编号,轮廓的定位可以通过Opencv中findContours方法实现,这个是执行分水岭之前的要求。

算法会根据markers传入的轮廓作为种子(也就是所谓的注水点),对图像上其他的像素点根据分水岭算法规则进行判断,并对每个像素点的区域归属进行划定,直到处理完图像上所有像素点。而区域与区域之间的分界处的值被置为“-1”,以做区分。


步骤

1、将白色背景变成黑色-目的是为后面的变换做准备
2、使用filter2D与拉普拉斯算子实现图像对比度提高,sharp(锐化)
3、转为二值图像通过threshold
4、距离变换
5、对距离变换结果进行归一化到[0~1]之间
6、使用阈值,再次二值化,得到标记
7、腐蚀得到每个Peak - erode
8、发现轮廓 – findContours
9、绘制轮廓- drawContours
10、分水岭变换 watershed
11、对每个分割区域着色输出结果
————————————————

5、代码

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace std;
using namespace cv;int main(int argc, char** argv) {char input_win[] = "input image";char watershed_win[] = "watershed segmentation demo";Mat src = imread("D:/vcprojects/images/cards.png");// Mat src = imread("D:/kuaidi.jpg");if (src.empty()) {printf("could not load image...\n");return -1;}namedWindow(input_win, CV_WINDOW_AUTOSIZE);imshow(input_win, src);// 1. change backgroundfor (int row = 0; row < src.rows; row++) {for (int col = 0; col < src.cols; col++) {if (src.at<Vec3b>(row, col) == Vec3b(255, 255, 255)) {src.at<Vec3b>(row, col)[0] = 0;src.at<Vec3b>(row, col)[1] = 0;src.at<Vec3b>(row, col)[2] = 0;}}}namedWindow("black background", CV_WINDOW_AUTOSIZE);imshow("black background", src);// sharpenMat kernel = (Mat_<float>(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);Mat imgLaplance;Mat sharpenImg = src;filter2D(src, imgLaplance, CV_32F, kernel, Point(-1, -1), 0, BORDER_DEFAULT);src.convertTo(sharpenImg, CV_32F);Mat resultImg = sharpenImg - imgLaplance;resultImg.convertTo(resultImg, CV_8UC3);imgLaplance.convertTo(imgLaplance, CV_8UC3);imshow("sharpen image", resultImg);// src = resultImg; // copy back// convert to binaryMat binaryImg;cvtColor(src, resultImg, CV_BGR2GRAY);threshold(resultImg, binaryImg, 40, 255, THRESH_BINARY | THRESH_OTSU);imshow("binary image", binaryImg);Mat distImg;distanceTransform(binaryImg, distImg, DIST_L1, 3, 5);normalize(distImg, distImg, 0, 1, NORM_MINMAX);imshow("distance result", distImg);// binary againthreshold(distImg, distImg, .4, 1, THRESH_BINARY);Mat k1 = Mat::ones(13, 13, CV_8UC1);erode(distImg, distImg, k1, Point(-1, -1));imshow("distance binary image", distImg);// markers Mat dist_8u;distImg.convertTo(dist_8u, CV_8U);vector<vector<Point>> contours;findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));// create makersMat markers = Mat::zeros(src.size(), CV_32SC1);for (size_t i = 0; i < contours.size(); i++) {drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + 1), -1);}circle(markers, Point(5, 5), 3, Scalar(255, 255, 255), -1);imshow("my markers", markers*1000);// perform watershedwatershed(src, markers);Mat mark = Mat::zeros(markers.size(), CV_8UC1);markers.convertTo(mark, CV_8UC1);bitwise_not(mark, mark, Mat());imshow("watershed image", mark);// generate random colorvector<Vec3b> colors;for (size_t i = 0; i < contours.size(); i++) {int r = theRNG().uniform(0, 255);int g = theRNG().uniform(0, 255);int b = theRNG().uniform(0, 255);colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));}// fill with color and display final resultMat dst = Mat::zeros(markers.size(), CV_8UC3);for (int row = 0; row < markers.rows; row++) {for (int col = 0; col < markers.cols; col++) {int index = markers.at<int>(row, col);if (index > 0 && index <= static_cast<int>(contours.size())) {dst.at<Vec3b>(row, col) = colors[index - 1];}else {dst.at<Vec3b>(row, col) = Vec3b(0, 0, 0);}}}imshow("Final Result", dst);waitKey(0);return 0;
}

输入原图像和锐化图像
在这里插入图片描述

原图和黑背景图(背景应为黑色)
在这里插入图片描述

threshold转化的二值化图片和距离变换结果图
在这里插入图片描述

距离变换结果图和二值化图像
在这里插入图片描述

http://www.yayakq.cn/news/59125/

相关文章:

  • 简单一点的网站建设怎么查询网站的备案号
  • 快三彩票网站建设急招土建施工员技术员
  • 论坛类的网站怎么做专业建设外贸网站制作
  • 如何做免费的公司网站建站公司兴田德润好不好
  • 网站建设工作室+怎么样wordpress菜单函数
  • 做网站的流程知乎人工智能教育培训机构排名
  • 打电话做网站的话术我的网站为什么打不开怎么回事
  • 头条网站开发wordpress使用邮箱
  • 贵阳免费做网站网页版梦幻西游大闹天宫八卦炉
  • 网站建设营业执照如何写国外域名服务商
  • 做产品的淘宝客网站爱站网关键词挖掘工具
  • 做网站怎么防止被黑自己做网站推广在那个网站
  • 网站秒收录工具个人网站建设赚取流量费
  • 电子商务网站开发设计报告书免x网站
  • 西安网站建设制作熊掌号软件工程师证书报考条件
  • 广州网站优化公司wordpress代码块行号
  • 石狮网站建设价格站长之家收录查询
  • 河南企业网站建设公司wordpress全文显示
  • 网络服装网站建设哪些网站可以免费发布广告
  • h5商城网站怎么建立设计一个app界面多少钱
  • 在凡科上做的网站无法加载出来哪些平台可以打小广告
  • 网站及系统建设维护建筑公司注册资金最低多少
  • php网站后台上传图片有没有推荐到首页的功能东莞自助建站软件
  • 怎么做学校子网站超级seo外链
  • 教育海报设计素材网站开发工具是什么
  • 重庆网站建设公司 检测网站的seo效果
  • 申请域名 建设网站wordpress批量修改字体大小
  • 平面图设计网站中国十大知名网站
  • 培训学校网站建设要点天津软件定制开发
  • 速成网站 改版 影响建设银行网站 开户行怎么查